首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Scope: Previous reports in the areas of animal studies and, recently epidemiology, have linked anti‐tumorigenic and anti‐inflammatory effects to dietary vitamin B6. This study investigated the molecular mechanism of these effects of vitamin B6. Methods and results: DNA microarray analysis was used to obtain information on changes in colon gene expression from vitamin B6 (pyridoxine) repletion in vitamin B6‐deficient rats. Pyridoxine supplementation down‐regulated the inflammatory molecule, serine protease inhibitor clade A member 3 (SPI‐3) mRNA expression in the colon. This study also showed that tumor necrosis factor α (TNF‐α) induced SPI‐3 mRNA expression in HT‐29 human colon cancer cells, and vitamin B6 (pyridoxal hydrochloride) pretreatment of HT‐29 cells inhibited TNF ‐induced mRNA expression of SPI‐3. Vitamin B6 inhibited TNF‐α‐induced NF‐κB activation via suppression of IκBα degradation in HT‐29 cells. HT‐29 cells stably expressing epitope‐tagged ubiquitin were generated and vitamin B6 pretreatment was shown to inhibit ubiquitination of the IkB protein in response to TNF‐α‐i. Conclusion: Vitamin B6 suppressed SPI‐3 expression in the colon of rats and in TNF‐α‐stimulated HT‐29 cells. Further, this study showed a possible role of vitamin B6 in the regulation of protein ubiquitination.  相似文献   

6.
BACKGROUND: Polygonum viviparum L. (PV) is a member of the family Polygonaceae and is widely distributed in high‐elevation areas. It is used as a folk remedy to treat inflammation‐related diseases. This study was focused on the anti‐inflammatory response of PV against lipopolysaccharide (LPS)‐induced inflammation in RAW264.7 macrophages. RESULTS: Treatment with PV did not cause cytotoxicity at 0–50 µg mL?1 in RAW264.7 macrophages, and the IC50 value was 270 µg mL?1. PV inhibited LPS‐stimulated nitric oxide (NO), prostaglandin (PG)E2, interleukin (IL)‐1β and tumour necrosis factor (TNF)‐α release and inducible NO synthase (iNOS) and cyclooxygenase (COX)‐2 protein expression. In addition, PV suppressed the LPS‐induced p65 expression of nuclear factor (NF)‐κB, which is associated with the inhibition of IκB‐α degradation. These results suggest that, among mechanisms of the anti‐inflammatory response, PV inhibits the production of NO and these cytokines by down‐regulating iNOS and COX‐2 gene expression. Furthermore, PV can induce haem oxygenase (HO)‐1 protein expression through nuclear factor E2‐related factor 2 (Nrf2) activation. A specific inhibitor of HO‐1, zinc(II) protoporphyrin IX, inhibited the suppression of iNOS and COX‐2 expression by PV. CONCLUSION: These results suggest that PV possesses anti‐inflammatory actions in macrophages and works through a novel mechanism involving Nrf2 actions and HO‐1. Thus PV could be considered for application as a potential therapeutic approach for inflammation‐associated disorders. © 2012 Society of Chemical Industry  相似文献   

7.
8.
9.
10.
BACKGROUND: Myricetin is a naturally occurring flavonoid that is found in many fruits, vegetables, teas and medicinal herbs. It has been demonstrated to have anti‐inflammatory properties, but, to date, no studies have described the immunomodulatory effects of myricetin on the functions of dendritic cells (DCs). The aim of this study was to evaluate the potential for myricetin to modulate lipopolysaccharide (LPS)‐stimulated activation of mouse bone marrow‐derived DCs. RESULTS: Our experimental data showed that treatment with myricetin up to 10 µg mL−1 does not cause cytotoxicity in cells. Myricetin significantly decreased the secretion of tumour necrosis factor‐α, interleukin‐6 and interleukin‐12p70 by LPS‐stimulated DCs. The expression of LPS‐induced major histocompatibility class II, CD40 and CD86 on DCs was also inhibited by myricetin, and the endocytic and migratory capacity of LPS‐stimulated DCs was blocked by myricentin. In addition, LPS‐stimulated DC‐elicited allogeneic T‐cell proliferation was reduced by myricetin. Moreover, our results confirmed that myricetin attenuates the responses of LPS‐stimulated activation of DCs via suppression of IκB kinase/nuclear factor‐κB and mitogen‐activated protein kinase‐dependent pathways. CONCLUSION: Myricetin has novel immunopharmacological activity, and modulation of DCs by myricetin may be an attractive strategy for the treatment of inflammatory and autoimmune disorders, and for transplantation. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Coriandrum sativum is used not only as a spice to aid flavour and taste values in food, but also as a folk medicine in many countries. Since little is known about the anti‐inflammatory ability of the aerial parts (stem and leaf) of C. sativum, the present study investigated the effect of aerial parts of C. sativum on lipopolysaccharide (LPS)‐stimulated RAW 264.7 macrophages. We further explored the molecular mechanism underlying these pharmacological properties of C. sativum. RESULTS: Ethanolic extracts from both stem and leaf of C. sativum (CSEE) significantly decreased LPS‐induced nitric oxide and prostaglandin E2 production as well as inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐interleukin‐1β expression. Moreover, LPS‐induced IκB‐α phosphorylation and nuclear p65 protein expression as well as nuclear factor‐κB (NF‐κB) nuclear protein–DNA binding affinity and reporter gene activity were dramatically inhibited by aerial parts of CSEE. Exogenous addition of CSEE stem and leaf significantly reduced LPS‐induced expression of phosphorylated mitogen‐activated protein kinases (MAPKs). CONCLUSION: Our data demonstrated that aerial parts of CSEE have a strong anti‐inflammatory property which inhibits pro‐inflammatory mediator expression by suppressing NF‐κB activation and MAPK signal transduction pathway in LPS‐induced macrophages. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
13.
The flavonol quercetin, especially abundant in apple, wine, and onions, is reported to have anti‐proliferative effects in many cancer cell lines. Antioxidant or pro‐oxidant activities and kinase inhibition have been proposed as molecular mechanisms for these effects. In addition, an estrogenic activity has been observed but, at the present, it is poorly understood whether this latter activity plays a role in the quercetin‐induced anti‐proliferative effects. Here, we studied the molecular mechanisms of quercetin committed to the generation of an apoptotic cascade in cancer cells devoid or containing transfected estrogen receptor α (ERα; i.e., human cervix epitheloid carcinoma HeLa cells). Although none of tested quercetin concentrations increase reactive oxygen species (ROS) generation in HeLa cells, quercetin stimulation prevents the H2O2‐induced ROS production both in the presence and in the absence of ERα. However, this flavonoid induces the activation of p38/MAPK, leading to the pro‐apoptotic caspase‐3 activation and to the poly(ADP‐ribose) polymerase cleavage only in the presence of ERα. Notably, no down‐regulation of survival kinases (i.e., AKT and ERK) was reported. Taken together, these findings suggest that quercetin results in HeLa cell death through an ERα‐dependent mechanism involving caspase‐ and p38 kinase activation. These findings indicate new potential chemopreventive actions of flavonoids on cancer growth.  相似文献   

14.
BACKGROUND: Safflower, whose botanic name is Carthamus tinctorius L., is a member of the family Compositae or Asteraceae. Carthamus yellow (CY) is the main constituent of safflower and is composed of safflomin A and safflomin B. Dried safflower petals are used in folk medicine and have been shown to invigorate blood circulation, break up blood stasis, and promote menstruation. In addition, dried safflower petals contain yellow dyes that are used to color food and cosmetics. In this study, we investigated the effects of dried safflower petals aqueous extracts (SFA) and CY on lipopolysaccharide (LPS)‐induced inflammation using RAW264.7 macrophages. RESULTS: Our data showed that treatment with SFA (1–1000 µg mL?1) and CY (1–2000 µg mL?1) does not cause cytotoxicity in cells. SFA and CY inhibited LPS‐stimulated nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin 1β (IL‐1β) release, through attenuation of inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) protein expression. Further, SFA and CY suppressed the LPS‐induced phosphorylation of nuclear factor‐κB, which was associated with the inhibition of IκB‐α degradation. CONCLUSION: These results suggest that SFA and CY provide an anti‐inflammatory response through inhibiting the production of NO and PGE2 by the downregulation of iNOS and COX‐2 gene expression. Thus safflower petals have the potential to provide a therapeutic approach to inflammation‐associated disorders. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Diospyros kaki (DK) contains an abundance of flavonoids and has been used in folk medicine in Korea for centuries. Here, we report for the first time the anti‐inflammatory activities of Quercetin (QCT) and Quercetin 3‐O‐β‐(“2”‐galloyl)‐glucopyranoside (Q32G) isolated from DK. We have determine the no cytotoxicity of Q32G and QCT against RAW 264.7 cells up to concentration of 50 μM. QCT and Q32G demonstrated potent anti‐inflammatory activities by reducing expression of nitric oxide (NO), tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, IL‐6 inducible NO synthase (iNOS), cyclooxygenase (COX)‐2, and mitogen‐activated protein kinase (MAPKs) in mouse RAW 264.7 macrophages activated with lipopolysaccharide (LPS). Both QCT or Q32G could decrease cellular protein levels of COX‐2 and iNOS as well as secreted protein levels of NO, PGE2, and cytokines (TNF‐α, IL‐1β, and IL‐6) in culture medium of LPS‐stimulated RAW 264.7 macrophages. Immunoblot analysis showed that QCT and Q32G suppressed LPS‐induced MAP kinase pathway proteins p‐p38, ERK, and JNK. This study revealed that QCT and Q32G have anti‐inflammatory potential, however Q32G possess comparable activity as that of QCT and could be use as adjuvant to treat inflammatory diseases.  相似文献   

16.
The in vitro anti‐inflammatory activity of supercritical rosemary (Rosmarinus officinalis L.) extracts (rosemary A and B) is been reported in this study. To achieve that, THP‐1 macrophages were activated using lipopolysaccharide or human ox‐LDL and secretion and gene expression of TNF‐α, IL‐1β, IL‐6 and IL‐10 were evaluated, as well as COX‐2 gene expression. Results indicated that both rosemary extracts (A & B) exhibit high anti‐inflammatory activity although at a higher extent in case of rosemary B extract (5 μg mL?1), representing a higher quantity of carnosic acid and carnosol than rosemary A. When comparing the activity of the extract to the standard itself, the anti‐inflammatory activity of standards of carnosic acid and carnosol was not as intense as that obtained with rosemary B. These data indicated that although carnosic acid content in the extracts is considered as the main anti‐inflammatory compound, a synergistic interaction with other compounds may play a significant role in enhancing its activity. Results provided the grounds for possible increase in the application of supercritical rosemary extracts in food formulations for mitigation or prevention of inflammatory diseases.  相似文献   

17.
以结肠癌细胞HT-29为细胞系,在确定乳源性酪蛋白糖巨肽(casein glycomacropeptide,CGMP)对脂多糖(lipopolysaccharides,LPS)诱导的HT-29细胞核因子-κB(nuclear factor-κB,NF-κB)亚单位p65蛋白影响的基础上,在最适作用时间条件下,利用Western blotting技术进一步检测乳源CGMP对NF-κB信号通路上关键蛋白IκBα、p-IκBα、E3RSIκB、UBC5表达水平的影响,以阐述乳源CGMP调控NF-κB信号通路中关键蛋白的作用机制。结果表明:乳源CGMP组的3种质量浓度(0.001、0.010、0.100?μg/m L)均可在一定程度上抑制LPS诱导的HT-29细胞NF-κB信号通路上IκBα蛋白的降解,0.100?μg/m L作用较为明显,与空白对照组比较有显著性差异(P0.01)。研究明确地证实了乳源CGMP可通过抑制p-IκBα、E3RSIκB、UBC5蛋白的表达来抑制IκBα蛋白的降解,进而抑制NF-κB信号通路的激活。结论:乳源CGMP可显著降低NF-κB信号通路关键蛋白IκBα的降解,其机制是抑制了IκBα的磷酸化和泛素化,使p-IκBα和泛素化关键蛋白E3RSIκB和UBC5的表达均有所下降,进而减少了IκBα的降解,增加了IκBα-p65-p50蛋白三聚体的数量,使p65蛋白核移位效应降低,进而减少下游基因的表达。因此,研究结果科学地阐释了乳源CGMP是通过调控NF-κB信号通路发挥抗炎的作用。  相似文献   

18.
19.
Mushrooms have been previously investigated for their immune‐modulating and anti‐inflammatory properties. We examined whether the anti‐inflammatory properties of Sarcodon aspratus ethanol extract (SAE) could elicit protective effects against dextran sulfate sodium (DSS)‐induced colitis in vivo. Male C57/BL6 mice were randomly assigned to 1 of 4 treatment groups: control (CON; n = 8), DSS‐treated (DSS; n = 9), DSS+SAE at 50 mg/kg BW (SAE50; n = 8), and DSS+SAE at 200 mg/kg BW groups (SAE200; n = 9). DSS treatment induced significant weight loss, which was significantly recovered by SAE200. Although SAE did not affect DSS‐mediated reductions in colon length, it improved diarrhea and rectal bleeding induced by DSS. SAE at 200 mg/kg BW significantly attenuated IL‐6 and enhanced IL‐10 expression in mesenteric lymph nodes (MLN), and significantly reduced IL‐6 levels in splenocytes. SAE200 also significantly attenuated DSS‐induced increase in IL‐6 and IL‐1β, and reductions in IL‐10 in colon tissue. High levels of SAE were also observed to significantly decrease inflammatory COX‐2 expression that was upregulated by DSS in mice colon. These findings may have relevance for novel therapeutic strategies to mitigate inflammatory bowel disease‐relevant inflammatory responses, via the direct and indirect anti‐inflammatory activity of SAE. We also found that SAE harbors significant quantities of total fiber and β‐glucan, suggesting a possible role for these components in protection against DSS‐mediated colitis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号