首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study examines a three‐dimensional numerical simulation of vortex structures and heat transfer behind a hill mounted in a laminar boundary layer. A vortex pair is formed symmetrically in the separation bubble behind the hill, and a hairpin vortex is periodically shed in the wake. The hairpin vortex moves downstream with time, and the gradient of the head of the hairpin vortex increases. Further downstream, the hairpin vortex is deformed to an Ω‐shaped structure. In the growth process of the hairpin vortex, horn‐shaped secondary vortices grow near the wall. The dissipation rate of the temperature fluctuation around the hairpin vortex increases because the heated fluid near the wall is removed to the free stream by Q2 ejection. Heat transfer increases due to the legs of the hairpin vortex and secondary vortices. These vortices generate high turbulence in the flow field and also contribute to an increase in Reynolds shear stress and turbulent heat flux. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 398–411, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20217  相似文献   

2.
Three‐dimensional numerical simulations of asymmetrical flows and heat transfer around a hill in shear flows were performed. When shear velocity distributions are introduced at the inlet, a vortex pair is formed asymmetrically to the spanwise direction behind the hill. Further, an asymmetrical hairpin vortex is periodically generated downstream. The leg of the asymmetrical hairpin vortex on the high‐speed side collapses first. Further downstream, the asymmetrical hairpin vortex breaks down earlier than the symmetrical hairpin vortex, and streamwise vortices appear on the high‐speed side. These streamwise vortices increase the heat transfer downstream. In contrast, no hairpin vortex appears in the case of a strong shear velocity distribution, but instead a streamwise vortex appears. The heat transfer decreases downstream since the turbulence generated by streamwise vortices is weak. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20223  相似文献   

3.
Analytical and numerical solutions are established for momentum and energy laminar boundary layer induced by a shock wave. The results indicated that skin friction σ decreases with increasing in velocity ratio ξ(1≤ξ< 6). For each specified ξ(1≤ξ< 6), temperature w(t) increases with increasing of Tw but decreases with Te , and for a range of t ∈[1,ξ], w(t) decreases with the increasing of t. Thermal diffusion increases with increasing of uw but decreases with increasing Ue.  相似文献   

4.
为了深入挖掘三角翼纵向涡发生器在两个相对壁面布置的强化换热潜力,采用数值模拟方法,在雷诺数3 000~18 000的范围内研究了5种纵向涡发生器配置的流动换热情况,配置方式包括单面布置的共同上、下流配置,双面布置的共同上、下流配置,以及混合配置。结果表明:纵向涡可以很好地提高场协同效果,换热强度不完全取决于通道中的二次流强度,还取决于通道中的场协同性;在所有配置中,混合配置具有最高的二次流强度、最佳的场协同效果以及换热性能,可以将光滑通道的Nu提高28.3%~35.3%;另外4种配置可分别将光滑通道的Nu提高21.4%~32.0%,20.0%~29.2%,26.3%~34.3%和23.7%~28.0%;建议选用Re<6 000范围内的混合配置,此时其具有1.03~1.10的综合换热因子以及1.32~1.35的Nu/Nu0。  相似文献   

5.
泰勒涡流为叠加于剪切流之上的二次流,其具有强化传热作用,在航空、水处理、制药工程和化工等领域都具有很大的应用价值。运用Fluent软件,建立长径比Γ = 30的模型并对同轴套管间的流态演变和传热特性进行了数值模拟。模拟结果显示了环隙内流体流态随着内筒转速增加的演变过程,表明在存在径向温差的情况下,涡流的存在强化了传热效率。对不同转速下的强化传热效果进行了对比分析,并确定了最佳状态点。  相似文献   

6.
为研究平行流热管的工作机理,本文基于Fluent软件中的VOF模型编写了蒸发冷凝相变的UDF程序,对不同功率下平行流热管管内两相流动和传热过程进行了数值模拟研究。模拟结果显示了初始阶段平行流热管管内的气液分布,启动阶段管内包括泡状流、弹状流、环状流等复杂流型的转变过程,稳定工作阶段工质在各并联管路中互激振荡流动。在高加热功率下,管内工质的互激振荡流动更为剧烈,热量输送距离更远。研究结果为平行流热管换热器的优化设计提供了参考依据。  相似文献   

7.
雷诺数Re=214~10 703时,通过数值模拟方法对布置有冲孔和无孔的两种矩形小翼涡流发生器的矩形通道进行了传热和流阻特性的研究。计算结果表明:在低雷诺数下,冲孔矩形小翼涡流发生器的传热因子j值与无孔矩形小翼涡流发生器相差不大,而在高雷诺数下,冲孔涡流发生器的传热因子j值略低于无孔涡流发生器,大约低1.03%~3.05%。在相同的雷诺数下,无孔矩形小翼涡流发生器的阻力因子f大于冲孔涡流发生器,而且随着雷诺数的增大二者的差距也越来越大。通过对比综合性能指标可知,两种通道的综合性能指标均随着雷诺数的增加而减小,而且冲孔矩形小翼涡流发生器的综合性能要优于无孔矩形小翼涡流发生器。  相似文献   

8.
Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators. The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30° and 45°) of a delta winglet vortex generator are examined. The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex. The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients. In addition, the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface. The heat transfer enhancement of the delta winglet pairs with an attack angle of 45° is larger than that with an angle of 30°. The delta winglet pair with an attack angle of 45° leads to an increase in pressure drop, while the delta winglet pair with the 30° angle results in a slight decrease. The heat transfer enhancement under identical pumping power condition for the attack angle of 30° is larger than that for the attack angle of 45° either for staggered or for aligned tube bank arrangement. Translated from Journal of Xi’an Jiao Tong University, 2006, 40(7): 757–761 [译自: 西安交通大学学报]  相似文献   

9.
边界点法在传热问题数值分析中的应用   总被引:2,自引:0,他引:2  
将一种新的数值分析方法-边界点法应用于传热问题的研究,对无内热源稳态热传导问题,通过传统边界元法将边界积分方程离散化,发现可以不直接求解影响系数矩阵,而是通过对偶关系,由域外虚源构造方程组的特解场形成边界已知和未知温度,热流密度的系数矩阵,而且域内温度和热流密度的求解将不依赖于边界未知参数的求解,对于有内热源的问题,可以将非齐次方程的解转换为齐次方程的解和某一确定解的叠加,对于非线性问题,可以通过基尔霍夫变换,将非线性问题转化为线性问题求解,这种边界点方法不但具有边界元法降维的优势,而且不须求解奇异积分,大大节约了计算时间,计算精度极高,以有内热源非线性稳态热传导问题的实例印证了这种方法的高效性。  相似文献   

10.
We have studied the enhancement of heat transfer by vortex generators. Experiments were performed on rectangular‐type vortex generators mounted on a parallel‐plate heater, and the heat transfer coefficient of the heater surface and pressure drop in the duct were measured. These measurements indicated that a rectangular vortex generator (called a double‐inclined winglet), with inclination angle of the vortex generator surface to the heater surface (β) at 60°, and the attack angle to the flow direction (γ) at 45°, maximizes the local Nusselt number of the heater surface. It was also found that a group of double‐inclined winglets has an optimal arrangement in a winglet array, longitudinal pitch and transverse pitch, that maximizes the ratio [Colburn's dimensionless heat transfer coefficient JH]/[friction factor f]. The results of numerical calculations showed that the double‐inclined winglet was superior to the conventional rectangular vortex generator in heat transfer. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 253–267, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10089  相似文献   

11.
IntroductionLiquid films flowing on a vertical or inclined wall bythe gravitational force are encountered in the wideindustrial and engineering fields['1, such as condensatefilm, evaporating falling film, gas absorb by liquid film,etc. In the case of Indnar film flow with smooth surface,heat transfer through the liquid film is mainly carried outby conduction, and it is sufficiently explained by theNusselt's theory. On the other hand, the heat transfer isfairly enhanced for films generating su…  相似文献   

12.
管勇  胡万玲 《节能》2006,25(7):23-25,31
通过数值模拟的方法,研究了小翼式涡产生器对错排圆管管片式换热芯子换热与阻力特性的影响,比较了光板与加涡产生器强化板芯的速度场、横向平均Nu数以及平均对流换热系数、阻力系数的变化规律,为进一步提高其换热性能、改进翅片结构、设计新型换热器提供了理论依据。  相似文献   

13.
3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition. __________ Translated from Journal of Xi’an Jiaotong University, 2006, 40(9): 996–1000 [译自: 西安交通大学学报]  相似文献   

14.
Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressuregradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.  相似文献   

15.
The main topic of this paper is the analysis of momentum and heat transfer mechanisms occurring inside a disturbed boundary layer. This analysis is carried out based on a phenomenological decomposition using von Karman’s integral equations, in which appear terms that account for several contributions: the flat plate term, and the unsteady and external gradient terms.This method is applied to the interaction between a single transverse vortex and a boundary layer developing on a flat plate. Based on numerical simulations, we present a qualitative and quantitative study of the behavior of momentum and heat wall transfer described by the terms resulting from the phenomenological decomposition. Finally, the time-dependent behavior of the analogy factor is investigated.  相似文献   

16.
The classical power law non-Newtonian fluids energy boundary layer equation is proved improper to describe the self-similar heat transfer. A theoretical analysis for momentum and energy boundary layer transfer behavior is made and the full similarity heat boundary layer equation is developed, which may be characterized by a power law relationship between shear stress and velocity gradient with the Falkner-Skan equation as a special case. Both analytical and numerical solutions are presented for momentum and energy boundary layer equations by using the similarity transformation and shooting technique and the associated transfer characteristics are discussed.  相似文献   

17.
To assess and optimize vortex generators (VGs) for flow separation control, the effect of these devices should be modelled in a cost and time efficient way. Therefore, it is of interest to extend integral boundary layer models to analyse the effect of VGs on airfoil performance. In this work, the turbulent boundary layer formulation is modified using a source term approach. An additional term is added to the shear‐lag equation, to account for the increased dissipation due to streamwise vortex action in the boundary layer, forcing transition at the VG leading edge where applicable. The source term is calibrated and a semi‐empirical relation is set up and implemented in XFOIL . The modified code is capable of addressing the effect of the VG height, length, inflow angle, and chordwise position on the airfoil's aerodynamic properties. The predicted polars for airfoils with VGs show a good agreement with reference data, and the code robustness is demonstrated by assessing different airfoil families at a wide range of Reynolds numbers.  相似文献   

18.
Convective heat transfer in a channel filled with a porous medium has been analyzed in this paper. The flow field is analyzed considering both the inertia and solid boundary effects and the thickness of the momentum boundary layer is found as a function of the Darcy and the Reynolds number. The two-equation model is applied for the heat transfer analysis and theoretical solutions are obtained for both fluid and solid phase temperature fields. The Nusselt number is obtained in terms of the relevant physical parameters, such as the Biot number for the internal heat exchange, the ratio of effective conductivities between the fluid and solid phases, and the thickness of the momentum boundary layer. The results indicate that the influence of the velocity profile is characterized within two regimes according to the two parameters, the Biot number and the conductivity ratio between the phases. The decrease in the heat transfer due to the momentum boundary layer is 15% at most within a practical range of the pertinent parameters.  相似文献   

19.
旋流主导着涡流管的内部流动,在有旋流的设备当中,高强度旋流由于涡旋破碎诱导产生的位于中央回流面附近的进动涡核被认为是旋流中的一种拟序结构,可以在一个峰值频率下偏离管道中心并绕着轴线做周期性运动,这种流动结构的产生对旋流本身产生了极大的影响。采用非定常求解模式计算三维涡流管内的内部流场,雷诺应力模型用于封闭Navier-Stokes输运方程,在FLUENT 15.0中数值模拟计算涡流管的内部旋流。结果显示了涡流管瞬态旋流速度场中的周期性振荡,以及非对称大尺度涡结构。  相似文献   

20.
针对气体-颗粒微尺度流动与传热过程开展数值模拟研究,所构建模型中气体处理为可压缩、变物性流体,并在颗粒表面采用速度滑移和温度跳跃边界条件以考虑气体稀薄效应。在数值模拟基础上,研究分析稀薄效应对颗粒与其周围气体流动与换热的影响程度,并进一步提出新的阻力系数与传热努谢尔特数关联式。研究结果表明,气体稀薄效应将减小颗粒阻力系数,同时抑制颗粒与其周围气体的传热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号