首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified alkaline thermotolerant bacterial lipase from Bacillus coagulans BTS‐3 was immobilized on nylon‐6 matrix activated by glutaraldehyde. The matrix showed ~ 70% binding efficiency for lipase. The bound lipase was used to perform transesterification in n‐heptane. The reaction studied was conversion of vinyl acetate and butanol to butyl acetate and vinyl alcohol. Synthesis of butyl acetate was used as a parameter to study the transesterification reaction. The immobilized enzyme achieved ~ 75% conversion of vinyl acetate and butanol (100 mmol/L each) into butyl acetate in n‐heptane at 55°C in 12 h. When alkane of C‐chain lower or higher than n‐heptane was used as an organic solvent, the conversion of vinyl acetate and butanol to butyl acetate decreased. During the repetitive transesterification under optimal conditions, the nylon bound lipase produced 77.6 mmol/L of butyl acetate after third cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Kinetics of the catalytic dehydration of 1‐butanol to di‐n‐butyl ether (DNBE) over Amberlyst 70 was investigated. Experiments were performed in liquid phase at 4 MPa and 413–463 K. Three elementary reaction mechanisms were considered: a Langmuir–Hinselwood–Hougen–Watson (LHHW) formulation; an Eley–Rideal (ER) formulation in which DNBE remains adsorbed; an ER formulation in which water remains adsorbed. Two kinetic models explain satisfactorily the dehydration of 1‐butanol to DNBE: a LHHW formalism in which the surface reaction between two adjacent adsorbed molecules of 1‐butanol is the rate limiting step (RLS) and where the adsorption of water is negligible, and a mechanism in which the RLS is the desorption of water being the adsorption of DNBE negligible. In both models, the strong inhibiting effect of water was successfully taken into account by means of a correction factor derived from a Freundlich adsorption isotherm. Both models present similar values of apparent activation energies (122 ± 2 kJ/mol). © 2015 American Institute of Chemical Engineers AIChE J, 62: 180–194, 2016  相似文献   

3.
1,2,3,4‐Tetraphenylcyclopentadiene triphenyl stibonium ylide initiated radical polymerization of n‐butyl methacrylate (n‐BMA) in dioxane at (60 ± 0.2)°C for 90 min under nitrogen atmosphere has been carried out. The system follows nonideal kinetics, i.e., Rp α [ylide]0.2 [n‐BMA]1.8. The value of k/kt and overall energy of activation have been computed as 0.133 × 10?2 L mol?1 s?1, 33 kJ/mol, respectively. The FTIR spectrum shows a band at 1745 cm?1 due to acrylate group of n‐BMA. The 1H NMR spectrum shows a peak of two magnetically equivalent protons of methylene group at 2.1 δ ppm. The DSC curve shows glass transition temperature (Tg) as 41°C. The presence of six hyperfine lines in ESR spectrum indicates that the system follows free radical polymerization and the initiation is brought about by phenyl radical. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2457–2463, 2007  相似文献   

4.
Ultrasonically initiated emulsion polymerization of n‐butyl acrylate (BA) without added initiator has been studied. The experimental results show that high conversion of BA can be reached in a short time by employing an ultrasonic irradiation technique with a high purge rate of N2. The viscosity average molecular weight of poly(n‐butyl acrylate) (PBA) obtained reaches 5.24 × 106 g mol?1. The ultrasonically initiated emulsion polymerization is dynamic and complicated, with polymerization of monomer and degradation of polymer occurring simultaneously. An increase in ultrasound intensity leads to an increase in polymerization rate in the range of cavitation threshold and cavitation peak values. Lower monomer concentration favours enhancement of the polymerization rate. 1H NMR, 13C NMR and FTIR spectroscopies reveal that there are some branches and slight crosslinking, and also carboxyl groups in PBA. Ultrasonically initiated emulsion polymerization offers a new route for the preparation of nanosized latex particles; the particle size of PBA prepared is around 50–200 nm as measured by transmission electron microscopy. © 2001 Society of Chemical Industry  相似文献   

5.
This study focused on the preparation, characterization, and determination of thermal properties of microencapsulated n‐hexadecane with poly(butyl acrylate) (PBA) to be used in textiles with heat storage property. Microcapsules were synthesized by emulsion polymerization method, and the particle size, particle size distribution, shape, and thermal storage/release properties of the synthesized microcapsules were analyzed using Fourier‐transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry techniques. Allyl methacrylate, ethylene glycol dimethacrylate, and glycidyl methacrylate were used as cross‐linkers to produce unimodal particle size distribution. MicroPBA microcapsules produced using allyl methacrylate cross‐linker were applied to 100% cotton and 50/50% cotton/polyester blend fabrics by pad‐cure method. The mean particle size of microcapsules ranges from 0.47 to 4.25 μm. Differential scanning calorimetry analysis indicated that hexadecane in the microcapsules melts at nearly 17°C and crystallizes at around 15°C. The contents of n‐hexadecane of different PBA microcapsules were in the range of 27.7–50.7%, and the melting enthalpies for these ratios were between 65.67 and 120.16 J/g, respectively. The particle size and thermal properties of microcapsules changed depending on the cross‐linker type. The cotton and 50/50% cotton/polyester blend fabrics stored 6.56 and 28.59 J/g thermal energy, respectively. The results indicated that PBA microcapsules have the potential to be used as a solid‐state thermal energy storage material in fabrics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A photopolymerization process at room temperature was devised to copolymerize vinyl acetate (VAc) and n‐butyl acrylate (BA) mainly to prepare rubber‐like damping sheet bearing pressure‐sensitive adhesive property in this study. The investigations using both the differential scanning calorimeter and rheometric dynamic analysis show the existence of two glass transition temperatures for each copolymer. The scanning electron microscopic pictures reveal that the degree of microphase separation increases with increasing annealing time at 70°C. It was suggested that the rubbery domain (formed by the PBA blocks) disperses in the glassy domain (constituted by the PVAc blocks), making an effective damping entity. Excellent damping was observed for the copolymer samples, with the tanδ peak values as high as 1.76–1.80 at a certain temperature range and with tanδ> 0.3 at quite wide temperature ranges. In addition, the copolymers containing more VAc tend to have the higher damping. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1396–1403, 2004  相似文献   

7.
This study evaluates the feasibility of using a continuous‐flow stirred vessel reactor (CFSVR) to synthesize n‐butyl phenyl ether (ROPh) from n‐butyl bromide (RBr) and sodium phenolate (NaOPh) by liquid–liquid–solid phase‐transfer catalysis (triphase catalysis). The factors affecting the preparation of triphase catalysts, the etherification reaction in a batch reactor, and the performance in a CFSVR were investigated. The kinetic study with a batch reactor indicated that when the initial concentration of NaOPh or RBr was high, the conversion of RBr would depend on the initial concentration of both RBr and NaOPh. The reaction can be represented by a pseudo‐first‐order kinetic model when the concentration of NaOPh is in proper excess to that of RBr, and the apparent activation energy is 87.8 kJ mol?1. When the etherification reaction was carried out in the CFSVR, the catalyst particles did not flow out of the reactor, even at a high agitation speed. The conversion of RBr in the CFSVR was, as predicted, lower than that in the batch reactor, but was higher than the theoretical value because the dispersed phase is not completely mixed. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
In this study, poly(n‐butyl methacrylate) (PBMA) was prepared by a suspension polymerization process, and blending with polyacrylonitrile (PAN) in N,N‐dimethyl acetamide to prepare PAN/PBMA blends in various proportions. Hansen's three dimensional solubility parameters of PAN and PBMA were calculated approximately through the contributions of the structural groups. The compatibility in these blend systems was studied with theoretical calculations as well as experimental measurements. Viscometric methods, Fourier transform infrared spectroscopy, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis were used for this investigation. All the results showed that a partial compatibility existed in PAN/PBMA blend system, which may be due to the intermolecular interactions between the two polymers. And, the adsorption experiment results showed that the addition of PBMA contributed to the enhancing adsorptive properties of blend fibers, which lays the foundation for further studying PAN/PBMA blend fibers with adsorptive function. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
10.
Copolymers of styrene and n‐butyl acrylate were prepared by atom transfer radical polymerization (ATRP) using CuBr/N,N,N′,N′,N″‐pentamethyl‐diethylenetriamine as catalyst and Methyl 2‐bromopropionate as initiator. The polydispersity of the copolymers is quite low (1.1–1.3). 13C {1H} NMR spectra of these copolymers show that the methylene and methine signals of the main chain are compositional sensitive and highly overlapped. Even the distortionless enhancement by polarization transfer (DEPT) was not able to assign the complex and overlapping signals. Assignments of the various resonance signals were done with the help of heteronuclear single quantum coherence (HSQC), total correlation spectroscopy (TOCSY), and heteronuclear multiple bond correlation (HMBC) experiments. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

11.
A silicone sheet was dipped into n‐butyl methacrylate monomer including benzoyl peroxide and was swollen for 0.5 h at 23°C. Then, the sheet was put into a glass tube equipped with a three‐way stopcock and was deoxygenated by freezing under dry nitrogen. Polymerization was carried out by heating at 80°C for 2 h under dry nitrogen. The resultant sheet was a component gradient silicone sheet with poly‐n‐butylmethacrylate. The content of poly‐n‐butylmethacrylate increased gradually from either surface to the middle of the sheet. This phenomenon was assumed to occur because of the volatilization of n‐butyl methacrylate monomer during the polymerization. The properties of the sheet include increased tear strength and decreased gas permeability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3152–3155, 2002; DOI 10.1002/app.10177  相似文献   

12.
固定化假丝酵母脂肪酶催化合成辛酸甘油酯   总被引:2,自引:0,他引:2  
孙猛  尹春华  陈君  陈必强  谭天伟 《化工进展》2006,25(11):1328-1331
以自制固定化假丝酵母脂肪酶作为催化剂,研究了无溶剂体系中辛酸和甘油直接酯化合成辛酸甘油酯的反应条件。考察了酶的种类、底物的物质的量之比、温度、酶量、甘油的初始含水量和反应时间等因素对辛酸转化率和产物组成的影响。结果证明,以纺织物作为载体制备的固定化假丝酵母脂肪酶适宜催化辛酸甘油酯的合成。最优反应条件为:辛酸与甘油的物质的量之比为2∶1,固定化假丝酵母脂肪酶加量为0.5g/0.69g甘油,温度为40 ℃,振荡培养箱转速为190 r/min。最优反应条件下辛酸转化率可以达到94%以上,经过简单处理的固定化酶可以重复使用4批。  相似文献   

13.
Polymerization catalysts based on copper precursors appear particularly interesting due to the low metal cost, limited toxicity and modest sensitivity to deactivation by polar species. To date, α‐olefin and polar monomer coordination polymerization catalysed using copper catalysts has been scarcely investigated, and a good part of the literature is represented by patents. Here this research has been expanded to the study of the performances of bis(salicylaldiminate)copper(II)/methylaluminoxane (MAO) catalysts in the polymerization of n‐butyl methacrylate. The study of the catalytic activity of bis(salicylaldiminate)copper(II)/MAO systems in n‐butyl methacrylate polymerization was focused on the relationship between the catalytic behaviour and the main reaction conditions and ligand structures. The electronic and steric characteristics of the chelate ligands play an important role in the catalytic performances. The presence of electron‐withdrawing nitro groups on the chelate ligands increased the catalytic activity which reached 36 kgpolymer mol?1 h?1, the highest value up to now reported for copper systems in methacrylic or acrylic monomer polymerization. These performances were ascribed to copper catalysts activated by MAO: without copper precursor, working in the presence of MAO and free salicylaldimine ligand, complete inactivity was ascertained. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The seeded emulsion copolymerization of n‐butyl acrylate and styrene in a weight ratio of 50/50 was investigated. The effect of the type of process (batch vs. semicontinuous) and the amounts of initiator and emulsifier charged into the reactor on the time evolution of the fractional conversion, number of polymer particles, and weight‐average molecular weight (Mw) was analyzed. It was found that the Mw depends to a slight extent on the type of process and the emulsifier concentration and to a larger extent on the initiator concentration. The molecular weight distributions (MWDs) and the gel content of the final latexes were also analyzed. In the absence of chain transfer agents (CTAs), the fraction of gel was higher in the semicontinuous processes. It was also found that the gel content increased with increasing initiator concentration in the recipe. The addition of 1 wt % CTA avoided gel formation and led to an important reduction of the Mw. Nevertheless, the MWDs presented a shoulder or even a second peak at high molecular weights that was due to reactions of chain transfer to the polymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1918–1926, 2003  相似文献   

15.
The results are presented for a detailed investigation involving the free‐radical photopolymerization of n‐butyl acrylate in the form of thin static films. The aim of this work is to benchmark the performance of a novel thin film spinning disk reactor that may be used for the continuous production of linear polymers using photoinitiation. Industrially relevant film thicknesses (200 μm to 1 mm) are studied as opposed to earlier work that looked into extremely thin films (5–25 μm). Such extreme film thicknesses will be difficult to sustain in a thin film reactor without adversely affecting the wettability of the reaction surface and the uniformity of the film. The effects of four main variables (film thickness, UV intensity, initiator concentration, and exposure time) are studied under static film conditions. A 366‐nm wavelength is utilized for the UV radiation with 2,2‐dimethoxy‐2‐phenylacetophenone (Irgacure 651) as the photoinitiator dissolved in n‐butyl acrylate. The molecular weights, polydispersities, and monomer conversions are measured by gel permeation chromatography. In a 400 μm thick film, conversions of >90% can be achieved with an exposure time of 40 s at a radiation intensity of 175 mW/cm2. The results using the same polymerization system in the spinning disk reactor are presented and compared with the static film results in Part II of this series. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2079–2095, 2004  相似文献   

16.
以磁性壳聚糖纳米复合材料共价固定的褶皱假丝酵母脂肪酶为催化剂,以木质甾醇和油酸为原料,对木质甾醇油酸酯的酶法合成工艺条件进行了优化。得到的最佳工艺条件为:催化剂用量12.7%(以底物总质量计),油酸与木质甾醇物质的量比为2∶1,木质甾醇质量浓度为122.9 g/L,反应温度50℃,反应时间24 h。在该条件下,木质甾醇转化率为96.42%。对月桂酸、肉豆蔻酸、棕榈酸不同碳链长度的脂肪酸或混合脂肪酸进行酯化反应,木质甾醇的转化率可达96.67%~98.74%,催化剂使用5次时,转化率仍可达82.45%。  相似文献   

17.
Lipase (EC 3.1.1.3) was immobilized on cellulose acetate–TiO2 gel fibre by the sol–gel method. The immobilized lipases were used for esterification of n‐butyric acid with n‐butyl alcohol and enantioselective acylation of (R, S)‐phenylethanol using vinyl acetate as an acyl donor. Compared with native lipase, the activity of the immobilized lipase was stable and relatively unaffected by the water content of the solvent and the substrate concentration. The data indicate that the lipases are immobilized on the fibre surface and that enzyme activity is influenced by bound water. However, the thermal reactivity and enantioselectivity of the immobilized lipase were less than those of native lipase. This may not reflect thermal inactivation of the enzyme but rather significant thermal contraction of the gel fibre by cellulose crystallization, resulting in liberation of bound water and a decrease in the amount of enzyme which is available for the reaction. Copyright © 2001 Society of Chemical Industry  相似文献   

18.
Extraction and back‐extraction of valeric acid in a fixed bed packed with Amberlite XAD‐4 resin impregnated with tri‐n‐butyl phosphate were experimentally studied at 25 °C. The effects of the feed flow rate, acid concentration in the feed solution and extractant concentration in the impregnated resin on the breakthrough curves, were investigated. The bed saturation capacity was larger under the conditions of higher extractant concentration in the resin phase and higher acid concentration in the feed solution. A dynamic model that considers intraparticle diffusion and external liquid film diffusion as limiting steps in mass transfer rates was successfully applied. The intraparticle effective diffusivities (10?9 dm2 s?1) were from one to three orders of magnitude lower than the diffusivities in the external liquid film (10?8–10?6 dm2 s?1). A fast and complete back‐extraction of valeric acid from the saturated bed was carried out with sodium hydroxide solutions. The operational life of the impregnated resin was also studied. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
Reaction conditions for the synthesis of monoglycerides (MG) by enzyme-catalyzed glycerolysis of rapeseed oil using Lipozyme® IM have been studied. Silica gel was used to adsorb the glycerol to overcome the problems of low glycerol solubility in the organic phase. An experimental design was used where temperature, time, the ratio of silica gel to glycerol (w/w), the water activity (a) w , the isooctane concentration, and the ratio of glycerol to triglycerides (mol/mol) were varied. Response surface methodology was used to evaluate initial reaction rate and yield for the different products. The best yield of MG achieved under the studied conditions was 17.4% (mol fatty acid in substance/total mol fatty acid in mixture) (75°C, 20 h, silica gel/glycerol 2:1, a w =0.17, 48% isooctane, glycerol/triglycerides 6:1). The same conditions yielded 36.8% diglycerides, 13.6% free fatty acids (FFA), and 36.9% triglycerides. This is at the same level as the equilibrium yield. The yield of MG is low compared to the final yield achieved with solid-phase glycerolysis. However, in solid-phase glycerolysis the reaction mixture becomes solid, and therefore the solid-phase process is not suitable for industrial application. The formation of FFA was very fast compared to the synthesis of MG. Equilibrium for FFA was reached within 2 h, and the yield was strongly affected by the a w . Increasing a w greatly increased the formation of FFA. In the a w ratio 0.06–0.3, the yield of FFA increased from 4 to 19% while the yield of MG was nearly unaffected. As FFA is an undesired product, it is important to keep the a w as low as possible.  相似文献   

20.
BACKGROUND : Propionic acid is widely used in chemical and allied industries and can be produced by biocultivation in a clean and environmentally friendly route. Recovery of the acid from the dilute stream from the bioreactor is an economic problem. Reactive extraction is a promising method of recovering the acid but suffers from toxicity problems of the solvent employed. There is thus a need for a non‐toxic solvent or a combination of less toxic extractants in a non‐toxic diluent that can recover acid efficiently. RESULTS: The effect of different extractants (tri‐n‐butylphosphate (TBP), tri‐n‐octylamine (TOA) and Aliquat 336) and their mixed binary solutions in sunflower oil diluent was studied to find the best extractant‐sunflower oil combination. Equilibrium complexation constant, KE, values of 4.02, 3.13 and 1.87 m3 kmol?1 were obtained for propionic acid extraction using Aliquat 336, TOA and TBP, respectively, in sunflower oil. The effect of different modifiers (1‐decanol, methylisobutyl ketone, butyl acetate and dodecanol) on the extraction was also studied and it was found that modifiers enhance extraction, with 1‐decanol found to be the best. CONCLUSION: The problem of toxicity in reactive extraction can be reduced by using a non‐toxic diluent (sunflower oil) or a modifier in a non‐toxic solvent, with the extractant. The addition of modifiers was found to improve the extraction. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号