首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the biodegradability of wastewater from a slaughterhouse located in Ke?an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230 mg dm?3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000 mg dm?3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry  相似文献   

2.
The objective of this study was to evaluate the optimal location of ozonation within biological treatment for a typical tannery wastewater by giving special attention to biodegradability‐based chemical oxygen demand (COD) characterization. As treating the raw tannery effluent solely by biological treatment is not adequate to meet the discharge standards owing to the high level of biorecalcitrant COD at the outlet, the application of chemical oxidation, i.e. ozone together with biotreatment (pre‐ozonation or in mid‐ozonation or post‐ozonation) was investigated. The tannery effluent under investigation had initially inert soluble COD (SI1) and particulate COD (XI1) fractions corresponding to 9% and 13% of the total COD (CT1), respectively, whereas each component of the biodegradable part—readily biodegradable COD (SS1), rapidly hydrolysable COD (SH1), and slowly hydrolysable COD (XS1)—accounted for around 26% of the total COD (CT1). Pre‐ozonation, undesirably competing with biotreatment for the removal of degradable organics, was shown to be insufficient both in terms of total COD (CT1) and inert COD (CI1) removal efficiencies. The scheme of biological treatment + ozonation + biological treatment could be applied successfully when 42.8 mg O3 min?1 was introduced for 5 min with a utilized ozone percentage of 76% at a point in biological treatment where the readily biodegradable COD (SS1) was depleted through biochemical reactions. Such an alternative yielded satisfactory outcomes when both total COD (CT) and inert COD (CI) removal efficiencies per utilized ozone ratios were considered. With post‐ozonation, on the other hand, the highest inert COD (CI) removal efficiencies together with an effluent quality meeting the discharge standards could be obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Household wastewater was segregated to grey and black water components as part of a recent approach aiming to separate wastewater fractions for more efficient treatment and reuse. Chemical oxygen demand (COD) fractionation and biodegradation characteristics of black and grey water were determined by means of model calibration of the oxygen uptake rate profiles. An ASM1 type of model modified for endogenous respiration was selected for this purpose. RESULTS: Calibration identified, aside from the readily biodegradable COD, two hydrolysable COD fractions in the black water, and only a single, slowly biodegradable COD fraction, in the grey water. The relative magnitude of the readily biodegradable COD fraction was high compared with typical domestic sewage, especially for grey water, and the level of particulate inert COD fraction, was relatively low. Biodegradation of soluble COD fractions in both wastewaters approximated typical rates observed for domestic sewage. However, the hydrolysis rate of the slowly biodegradable COD was quite low, reflecting the characteristics and impact of settleable organic matter. CONCLUSION: Based on the process rates obtained, aerobic biodegradation was equally effective for black and grey water fractions, both for the removal of soluble COD and the stabilization of particulate COD. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Three treatment methods, raw wastewater (RW)?→?coagulation?→?biological treatment (RCB), RW→?pre-ozonation?→?biological treatment (ROB) and RW?→?biological treatment?→?post-ozonation (RBO), were investigated to clarify their effectiveness in treating dyeing wastewater from a treatment plant. The decrease in dissolved organic carbon (DOC) was in the following order: RCB?≥?RBO?>?ROB. DOC removal of 200 mg/L by biological treatment of RW was clearly higher than that of 12 mg/L by ozonation. On the other hand, only DOC removal of 108 mg/L was observed by biological treatment in RW after ozonation. The decrease in biological oxygen demand (BOD5) was in the following order: ROB?≥?RCB?>?RBO. Because of the enhancement of biodegradability brought about by ozonation, BOD5 after ozonation in RBO was higher than that of RW after biological treatment. Color was effectively removed by ozonation for both RW and RW after biological treatment, and the decrease in color was in the following order: RBO?>?ROB?≥?RCB. Adsorbable organic halide formation potential (AOXFP) and toxicity unit (TU15, exposure time is 15 min) were more effectively decreased by biological treatment than by coagulation or ozonation, although the differences among RCB, ROB and RBO were very small.  相似文献   

5.
Ozonation of a natural tannin (NT; CODo?=?1195 mg/L; TOCo?=?342 mg/L; BOD5,o?=?86 mg/L) and a synthetic tannin ST; CODo?=?465 mg/L; TOCo?=?55 mg/L; BOD5,o?=?6 mg/L) being frequently applied in the polyamide dyeing process was investigated. Synthetic wastewater samples containing these tannins individually were prepared and subjected to ozonation at varying ozone doses (625– 1250 mgO3/L wastewater), at pH?=?3.5 (the application pH of tannins) and pH?=?7.0 at an ozone dose of 1125 mgO3/L wastewater. The collective environmental parameters COD, TOC, BOD5, UV254 and UV280 (UV absorbance at 254 nm and 280 nm, representing aromatic and unsaturated moieties, respectively) were followed during ozonation. Changes in the biodegradability of the tannins were evaluated in terms of BOD5 measurements conducted before and after ozonation. In addition, activated sludge inhibition tests employing heterotrophic biomass were run to elucidate the inhibitory effect of raw and ozonated textile tannins towards activated sludge biomass. Partial oxidation (45% COD removal at an ozone dose of 750 mg O3/L wastewater and pH?=?3.5) of ST was sufficient to achieve elimination of its inhibitory effect towards heterotrophic biomass and acceptable biodegradability improvement, whereas the inhibitory effect and biodegradability of NT could not be reduced via ozonation under the same reaction conditions.  相似文献   

6.
Ozonation was tested on selected streams of cotton finishing textile plant wastewater for optimizing chemical oxygen demand (COD) removal. For this purpose, significant COD fractions in the wastewater were experimentally identified and the effect of ozone on these fractions was investigated. Ozonation experiments were performed with a 1 dm3 sample volume. Ozone treatment of batches of raw wastewater provided, at a rate of 62 mg min?1 and a gas feeding time of 15 min, achieved complete colour removal but only 21% COD reduction. Increasing the feeding time to 30 min slightly increased the COD removal to 32%. At this feeding time, removal of the readily biodegradable COD was 60%, but soluble inert COD reduction remained at 16%, indicating selective preference of ozone for simpler compounds. At low concentrations, ozone was mainly influential on soluble COD compounds. Longer feeding times also affected particulate compounds, resulting in the solubilization of the COD fractions. Pre‐ozonation of the dye‐house wastewater, as a segregated stream, proved much more effective in the breakdown of refractory organic compounds, rendering the overall plant effluent more amenable to biological treatment. © 2002 Society of Chemical Industry  相似文献   

7.
Wastewaters derived from a textile factory and an industrial park were subjected to treatment with ferric chloride coagulation; ozonation; ferric chloride pre-coagulation/Fenton-based process/lime post-coagulation; Fenton-based process/lime post-coagulation; and ferric chloride pre-coagulation/ozonation. Schemes with the Fenton-based process proved the most efficient for treatment of both wastewater samples. The characteristics of wastewater samples treated by a Fenton-based process at H2O2/COD weight ratio 0.5:1 complied with the discharge limits stated by regulations for wastewater directed to local sewerage. The Fenton-based process/lime post-coagulation scheme proved more efficient than ferric chloride pre-coagulation/Fenton-based process/lime post-coagulation system. The increase of H2O2/COD weight ratio to 2:1 resulted in 5 and 10% of residual COD and DOC, respectively. All studied processes and combined physicochemical treatment schemes, except single ozonation, resulted in toxicity reduction and biodegradability improvement in both wastewater samples. The operational costs of applied treatment schemes were calculated and indicated the Fenton-based process schemes as the most feasible and cost-effective.  相似文献   

8.
Using C.I. Reactive Yellow 3 as the target compound, the effect of the combined use of ozonation and post-biodegradation on the decrease in dissolved organic carbon (DOC) concentration was investigated, and the synergistic effect (the difference in the amounts of DOC removed by the biological process between solutions with and without ozonation) was estimated. A decrease in DOC concentration was observed during ozonation and ΔO3/ΔDOC was decreased from 16.0 to 5.2 with increasing ozonation time. Moreover, an enhancement of biodegradability was shown. A further decrease in DOC concentration was observed during the biodegradation after ozonation. The total amount of DOC removed by the combined method was increased from 73.6 mg at 30 min to 159.9 mg at 4 h. The synergistic effect was in the range of 22.7 to 39.2 mg. BOD5 was a better indicator of the synergistic effect than BOD5/DOC.  相似文献   

9.
The aim of this work was to determine the effect of ozone on dissolved organic matter (DOM) during wastewater coagulation using alum. Adding ozone to the coagulation treatment (O3ECT) enhanced the quality of the final effluent in comparison to conventional coagulation treatment (CT). Final effluents were analyzed by Fourier transform infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The hydrophilic polar fraction was separated from the hydrophobic fraction using fractionation resins XAD-8 and XAD-4. Wastewater hydrophilic DOM was characterized by molecular weight distribution (MWD), and, BOD5, TOC and DOC parameters. Results show that FTIR spectra for both effluents were very similar in the frequency range 7000 to 1400 cm?1; however, some differences occurred in the O3ECT effluent in the range 1100 to 700 cm?1, which indicated that amines and aromatics groups were affected. In the same way, the UV-Vis spectra showed that there was an increase in absorbance within the wavelength range 285 to 300 nm for the O3ECT effluent (when compared with CT) while the absorbance decreased in the range 210 to 455 nm, particularly at 380 nm. With regards to the hydrophilic polar compounds of DOM, the most abundant fraction in raw wastewater was found in the 3–10 kDa range. After CT, the effluents fraction concentrations decreased in all cases, but for O3ECT the 10–30 kDa range exhibited a marked increase while the smaller (<3 kDa, 3–10 kDa) and larger fractions (>30 kDa) decreased. The ozone application during coagulation slightly increased TOC and DOC percentage removals, 84.4% to 89.1% and 80% to 82.5%, respectively. This suggests that the small dose of ozone transferred (1.47 mg/L) caused only minor changes in DOM. Finally, the O3ECT effluent exhibits 10 mg/L more of biological oxygen demand (BOD5) than a single CT.  相似文献   

10.
The continuous treatment of domestic wastewater by an activated sludge process and by an integrated biological–chemical (ozone) oxidation process were studied in this work. Chemical oxygen demand (COD), biochemical oxygen demand (BOD), absorbance at 254 nm (UV254) and nitrogenous compound content were the parameters followed in order to evaluate the performance of the two processes. Experimental data showed that both UV254 and COD reductions are improved in the combined biological–chemical oxidation procedure. Thus, reductions of 59.1% and 37.2% corresponding to COD and UV254, respectively were observed after the biological process (hydraulic retention time = 5 h; mixed liquor volatile suspended solids concentration = 3142 g m−3) compared with 71.0% and 78.4% obtained when a post‐ozonation step ( D O3 = 41.7 g m−3) was included. During conventional activated sludge treatment, appropriate nitrification levels are only achieved with high hydraulic retention time and/or biomass concentration. Ozonation after the secondary treatment, however, allows improved nitrogen content reduction with total nitrite elimination. Post‐ozonation also leads to a higher biodegradability of the treated wastewater. Thus, the ultimate BOD/COD ratio goes from 0.16 after biological oxidation to 0.34 after post‐ozonation with 41.7 g O3 m−3. © 1999 Society of Chemical Industry  相似文献   

11.
The ozonation of wastewater supplied from a treatment plant (Samples A and B) and dye‐bath effluent (Sample C) from a dyeing and finishing mill and acid dye solutions in a semi‐batch reactor has been examined to explore the impact of ozone dose, pH, and initial dye concentration. Results revealed that the apparent rate constants were raised with increases in applied ozone dose and pH, and decreases in initial dye concentration. While the color removal efficiencies of both wastewater Samples A and C for 15 min ozonation at high ozone dosage were 95 and 97%, respectively, these were 81 and 87%, respectively at low ozone dosage. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal efficiencies at several ozone dose applications for a 15 min ozonation time were in the ranges of 15–46% and 10–20%, respectively for Sample A and 15–33% and 9–19% respectively for Sample C. Ozone consumption per unit color, COD and DOC removal at any time was found to be almost the same while the applied ozone dose was different. Ozonation could improve the BOD5 (biological oxygen demand) COD ratio of Sample A by 1.6 times with 300 mg dm?3 ozone consumption. Ozonation of acid dyes was a pseudo‐first order reaction with respect to dye. Increases in dye concentration increased specific ozone consumption. Specific ozone consumption for Acid Red 183 (AR‐183) dye solution with a concentration of 50 mg dm?3 rose from 0.32 to 0.72 mg‐O3 per mg dye decomposed as the dye concentration was increased to 500 mg dm?3. © 2002 Society of Chemical Industry  相似文献   

12.
An increase in the biodegradability of secondary effluent after ozonation as measured by CBOD5 (carbonaceous BOD5), generally has been considered to be due to the conversion of non-biodegradable organic material. Experiments on a specific combined unicipal/industrial waste containing a high percentage of malting plant wastewater showed that an increase in CBOD5 realized at the waste treatment plant was due to a shift in the oxygen uptake curve. Ozonation was found to affect both non-biode-gradable and biodegradable organic matter and resulted in improved overall effluent quality despite the observed increase in CBOD5. As an indication of effluent quality, the CBOD5 test is felt to be inadequate.  相似文献   

13.
The Fenton process was used to increase the biodegradability of refinery wastewater. Initially, effects of reaction time, H2O2/COD and H2O2/Fe2+ molar ratios were investigated and biodegradability of wastewater was determined in terms of the BOD5/COD ratio. Preliminary results showed that the Fenton process was able to improve wastewater biodegradability from 0.27 to 0.43. Subsequently, the process was optimized by using response surface methodology based on a five-level central composite design. Adequacy and significance of results were analyzed in analysis of variance. The quadratic model was found to be significant to give less than 0.05 probability of error. The model was fit with data based on insignificant of lack-of-fit test at values of 0.93. The high R2 and Adj.R2 (0.95 and 0.91) indicates satisfactory adjustment of quadratic model to experimental data. Based on optimized conditions, wastewater biodegradability improved to 0.44 via H2O2/COD and H2O2/Fe2+ molar ratios of 2.8 and 4 within 71 minutes reaction time.  相似文献   

14.
BACKGROUND: The aim of this study was to assess the feasibility of coupling photocatalysis and a biological treatment for the removal of azo dyes from aqueous effluents. Biological processes do not always appear relevant for dyes removal, owing to the low or total absence of biodegradability of this class of pollutants. RESULTS: During photocatalysis pre‐treatment, a decrease in the chemical oxygen demand (COD) indicated oxidation of the target compound and thus a change in the chemical structure; better biodegradability or less toxicity could then be expected. However, the concomitant decrease in dissolved organic carbon (DOC), characteristic of a high mineralization yield, led to nearly constant COD:DOC ratios, which was unfavorable for an increase in biodegradability. It was confirmed by the low values found for the ratios biological oxygen demand (BOD5) to COD, which remained in the range 0.09–0.19, namely below 0.4 after photocatalytic reaction. Moreover, toxicity increased or remained at a high level after irradiation of the azo dyes for 3 h, and decreased only for Orange II, from toxic (EC50 = 53%) to moderately toxic (EC50 = 76%). CONCLUSION: An integrated process involving photocataysis and biological treatment to treat azo dyes appeared unsuitable under the conditions tested and may only be considered for Orange II among the four dyes tested. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Aqueous solutions of five selected non-ionic surfactants: Triton (i-octylphenolethoxylates), Tergitol (2,6,8-trimethyl-4-nonanoloxethylates), Symperonic (n-nonylphenol-oxethylates) and Brij (fatty alcohol ethoxylates) were investigated in this study. Using the bioluminescent bacteria Vibrio fischeri the toxicity of the surfactants solutions were determined. An attempt was made to relate rather low biodegradability of nonionic surfactant solutions measured by the BOD5/COD ratio (ranging from 1 to 17%) to their toxicity. The ozonation process was carried out in a 1.5 dm3 stirred cell reactor equipped with two ozone detectors. The following parameters were analyzed: pH, COD, BOD5, DOC, TOC, polarography as well as UV spectrum. The positive effect of ozonation, represented by decay of UV absorption, was visible in almost complete destruction of the surfactants, with exception of Triton X-705 (only 65% degradation after absorption of 2000 mgO3/dm3). The most striking results were obtained in toxicity tests for ozonated solutions of the non-ionic surfactants – an increase of the bacterial growth inhibition (1.5 to 4 times increase in toxicity due to ozonation). The obtained results were discussed taking into account the literature and our own experimental data on mechanisms of ozonation and biodegradation of non-ionic surfactants of the Triton-type and similar chemical structures.  相似文献   

16.
BACKGROUND: The use of ozone combined with biological treatment was investigated for molasses fermentation wastewater containing highly concentrated, brown and biorefractory compounds. These persistent compounds, known as melanoidins, generate disposal issues: in the environment, the color is problematic for aquatic life; and in municipal wastewater treatment plants, the molecules are biorefractory. RESULTS: This paper aims to evaluate the impact of ozone pretreatment, applied in the range 0.1 to 1 g g?1 consumed ozone doses, on both macroscopic physico‐chemical parameters such as chemical oxygen demand (COD), total organic carbon (TOC), color and UV absorbance, and batch aerobic biodegradability. Then, performances of ozone pretreatment are assessed in terms of biodegradability improvement in batch and semi‐continuous anaerobic processes and, also, in semi‐continuous denitrification as a potential carbon source. Ozonation applied at the ozone dose of 0.5 g O3 g?1 COD led to an increase in biodegradability in all bioreactors. On average, the pretreatment resulted in an increased biodegradable fraction from zero to 33% without noticeable toxicity on biomass. This ozone dose also achieved 45% nitrogen removal by biological denitrification. CONCLUSION: Ozone pretreatment is a suitable technique for the biodegradability improvement of molasses fermentation wastewater, in aerobic, anaerobic and anoxic conditions. The pretreatment should be optimized in order to maximize the subsequent biodegradability. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Carpet manufacturing and finishing with purely synthetic fibers has received relatively little attention, compared to other textile processing types. This study evaluates the biodegradation kinetics of organic compounds generated from polyamide‐based carpet manufacturing. RESULTS: Experiments were conducted on pre‐washing and dyeing/softening wastewater effluents. Model evaluation of oxygen uptake rate profiles with dual hydrolysis kinetics revealed that the soluble slowly hydrolysable chemical oxygen demand (COD) was the major fraction, constituting nearly 97% of the biodegradable COD and 78% of total COD content. Degradation of the slowly hydrolysable COD fraction was characterized with a rate coefficient of 0.72 day?1, a significant rate limiting step for substrate utilization. Model simulation of system performance indicated that an unusually long hydraulic retention time was required for an activated sludge system to reduce the effluent COD concentration. CONCLUSION: Compared to domestic wastewater, two additional hydrolysable COD fractions with different degradation kinetics were characterized. The dyeing and softening step had the highest slowly biodegradable organic matter content, with the lowest degradation rate. Simulation results showed that soluble slowly hydrolysable COD degradation did not cause any problem in terms of effluent quality. With the system operated under reduced solids retention time, the effluent COD quality was significantly influenced by the slow hydrolysis rate of soluble hydrolysable matter. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
This work deals with the biodegradability and toxicity of three non-steroidal anti-inflammatory drugs (NSAID) (diclofenac, ibuprofen and naproxen) treated by ozonation. The results show that the total removal of 200 mg L?1 of diclofenac and 100 mg L?1 of naproxen is possible using an ozone dose of 0.20 and 0.04 g L?1, respectively. For 200 mg L?1 of ibuprofen, 90% removal is achieved using an ozone dose of 2.3 g L?1. The BOD5/COD ratio, the Zahn-Wallens test and EC50 toxicity test (Microtox) are chosen as biological and toxicity indicators of NSAID intermediates. The evolution of BOD5/COD ratio during 1 hour of treatment is evaluated and the results show that ozonation improves the biodegradability for the three NSAID treated solution. The Zahn-Wellens test for diclofenac and ibuprofen solutions shows that biological mineralization, after 28 days, is higher for diclofenac than for ibuprofen solution. According to the Microtox test, the treatment with ozone removes the toxicity of the naproxen solution. Taking into account the results obtained with the biocompatibility tests it could be assumed that ozonation is an adequate treatment for removal NSAID in aquatic medium, and the ozonated effluents could be post-treated in a biological wastewater facility.  相似文献   

19.
Dyeings on cotton obtained using three commercial reactive dyes were subjected to three wash-off processes namely, a standard, five-stage method which used a proprietary wash-off agent, a five-stage process in which Na2CO3 was used in place of the commercial wash-off agent and a three-stage, chemical-free method. Dyeings that were generally of the same hue and colour strength and which also displayed similar levels of fastness to repeated washing, were obtained using each of the three wash-off processes. The replacement of the commercial wash-off agent in the five-stage, standard wash-off process with Na2CO3 reduced, considerably, both the COD and BOD5 loads of the residual wastewater; the corresponding COD/BOD5 ratios showed an improvement in the biodegradability of the residual wastewater. Although reducing the number of wash-off stages from five to three and replacing Na2CO3 with 98 °C water rinses increased both COD and BOD5 loads, the ensuing biodegradability of the residual wastewater was improved. Thus, by using a three-bath, water-only wash-off process, not only was the amount of water used for reactive dye wash-off reduced but also the wastewater generated was of higher biodegradability.  相似文献   

20.
In the present study ozonation process was implemented to analyze the effect of ozonation time on the rate of chemical oxygen demand (COD) removal, mineralization and rate of decolorization of azo dyes. Three types of azo dyes i.e. Acid Red 14, Direct Red 28 and Reactive Black 5 were selected. Decolorization and mineralization of samples were conducted in batch scale. The COD and color removal efficiency were found to be increasing at a certain time of ozonation. The results with Acid Red 14, Congo Red and Reactive Black 5 dyes solutions lead to maximum COD reduction of 75%, 67% & 50% respectively. 93%, 92% and 94% color removal were achieved after 25 min of ozonation time of the same dyes which highlighted that ozonation process was found to be more efficient for reactive dye decolorization. Ozonation by-products analyzed by ion chromatography resulted that it partially mineralized with the formation of chloride, fluoride, sulphate, nitrate and oxalate ions. During ozonation process a rapid decrease in pH value indicated the acidic nature of by-products. The effect of buffered dye solutions on the ozonoation process highlighted that the decolorization efficiency decreases in comparison to unbuffered dye solutions. Ozonation led to enhancement of biodegradability ratio (BOD5/COD) and increased electrical conductivity of the dye solutions. Optimum ozonation time required for degradation of dye solutions reflected the evaluation of energy consumption and cost of the treatment after ozonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号