首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thermal mechanical fatigue behaviour of particle reinforced EN AW‐6061‐T6 and development of residual stresses in the matrix material by thermal mechanical loading The behaviour of non reinforced and 15 Vol.‐% α‐alumina particle reinforced wrought aluminium alloy EN AW‐6061‐T6 in thermal mechanical fatigue loading was investigated at different maximum temperatures. The tests were performed in strain controlled mode by means of an electro‐mechanical testing machine. Alternating load deformation and life cycle behaviour either materials were compared. It came out, that the reinforcement leads to an decreasing thermal mechanical fatigue life cycle while keeping constant the maximum temperature and mechanical loading. The two materials showed softening behaviour due to high maximum temperatures of 573 K to 673 K. However, there is an intense scatter of the number of cycles to failure of the non reinforced alloy aggravating the interpretation of the results. On the other hand the thermal mechanical life cycle increases in combination with increasing maximum temperatures. Simultaneously the part of plastic deformation in mechanical loading increases for both materials, while for a constant total strain range the effective maximum and minimum stresses are decreasing. Furthermore, the development of residual stresses in the matrix of the reinforced alloy by thermal mechanical fatigue loading was analysed. It was observed that only small absolute values of residual stresses will be obtained for these loads. Nevertheless, tendencies of mounting tensile residual stresses can be identified in the direction of thermal mechanical fatigue loading and subsequently reduction of the residual stresses.  相似文献   

3.
Fatigue design of aluminium welded joints by the local stress concept exemplarily shown on the naturally aged wrought aluminium alloy AW‐5083 and the artificially aged wrought aluminium alloy AW‐ 6082 T6 Local fatigue design concepts based on material‐ and microstructural‐related parameters, e.g. the microsupport‐concept, cannot be regarded as easily applicable. The investigations, which compared the micro‐support‐concept with the local stress concept with a fictitious notch radius rf, were carried out with different types of MIG‐welded joints of the aluminium alloys AW‐5083 and AW‐6082 T6 under fully reversed and pulsating axial loading. The evaluation of the results showed that the local stress concept using the fictitious notch radius of rf = 1.0 mm can be applied to aluminium welded joints from plates with thicknesses t ≥ 5 to 25 mm independently from the alloy and weld geometries (fully or partially penetrated butt welds, transversal stiffener). Master design curves are proposed for different stress ratios, i.e. R = ‐1, 0 and 0.5, which allow the consideration of residual stresses as well as load induced mean stresses. The results permit also the suggestion of Δσ = 70 MPa as FAT‐value for the IIW‐Fatigue Design Recommendations  相似文献   

4.
5.
Fabrication, microstructure and corrosion behaviour of the conventional and ultrafine‐grained AA6082 The effect on the corrosion behaviour of the commercially available AlSi1MgMn alloy (AA6082) with ultrafine grains in comparison to coarse grains, i.e. the conventional material state was investigated. The results of the electrochemical experiments are presented in correlation to the microstructure before and after the corresponding examinations. The quantification of the induced corrosion damage as well as the corrosion characteristics shows the reduced susceptibility of the material with ultrafine‐grained microstructure in contrast to the coarse‐grained initial state.  相似文献   

6.
Self-tapping aluminium screws are an innovative joining technology for the assembly of lightweight components in industrial scale. It has been established in the past that porous anodic oxide coatings in many cases reduce the fatigue strength of specimens without notches. In the present work, the fatigue behaviour of notched specimens, i.e. self-tapping screws made from aluminium alloys EN AW-6056, 6082 (both in a conventional state and in a fine-grained state produced by equal channel angular pressing – ECAP) and 7068 with and without oxide coatings is examined. The coatings are produced by hard anodising and are necessary for the thread-forming process during assembly. While the coatings do not affect the static tensile strength, they reduce the fatigue strength for the specimens of the 6056 and the 6082 alloy. For the 7068 alloy a slight increase in fatigue strength is discovered on a low load horizon. The scatter of endured fatigue cycles until fracture of specimens is generally reduced by the anodic oxide coatings.  相似文献   

7.
Forming of high‐strength aluminium alloys A comparison of the forming behavior of both aluminum alloys in as‐received condition (EN AW‐7075 T651) as well as modified condition (EN AW‐7075 ECAP) when processed with conventional forming processes (rolling, extrusion) is conducted on the base of experimentally determined material characteristics. In the following the process limits of the true strain are located by variegating the tool geometry. The influence of the manufacturing method on the plasticity is also a subject matter to analysis. Based upon the outcome of this analysis special tool conceptions are being developed, which allow the forming of highest‐strength aluminum while creating hydrostatical pressure states in the deformed zone. Both simulation and experiments showed material failure of the ultra‐fine‐grained materials when extruded whereas rolling, being the incremental forming process, allowed damage‐free manufacturing of components.  相似文献   

8.
The use of high thermal conductivity copper alloys in plastic injection moulds provides the benefit of rapid moulding cycles through effective heat transfer. However, copper alloys are relatively soft and wear rapidly so manufacturers are now developing copper alloys with increased hardness and wear resistance. Their wear resistance can be further improved by the deposition of hard coatings such as electroplated chromium, electroless nickel and Physical Vapour Deposition (PVD) coatings. In this paper, the tribological performance of three proprietary high-strength Cu alloys (Ampcoloy® 940, Ampcoloy® 944 and Ampcoloy® 83) coated with PVD CrN and CrAlN coatings has been evaluated. A medium phosphorous content electroless Ni-P (ENi-P) plated layer was also deposited as a pre-treatment to PVD CrN and CrAlN coatings to increase the load support. The effect of this intermediate ENi-P layer was also evaluated. Surface roughness and instrumented hardness measurements were used to characterise all coated systems in both plated (i.e. with the intermediate ENi-P coating) and standard (i.e. unplated) conditions. Scratch tests were also performed to evaluate the effect of the ENi-P on PVD coating adhesion to Cu alloy substrates. The tribological behaviour of PVD-coated Cu alloy systems was evaluated by pin-on-disc wear tests and ball-on-plate impact tests. Results demonstrate that the ENi-P layer improves the load support for PVD coatings on Cu alloys, thereby improving their tribological performance. However, for PVD-coated Cu alloys in the standard condition, the Cu alloy substrate type plays an important role in the tribological performance of PVD coatings. For instance, PVD CrN coatings were more suited to a certain Cu alloy type whilst CrAlN to the other two types.  相似文献   

9.
While the fatigue behavior of die cast aluminum as well as welded aluminum wrought alloys have been subject of several studies, no systematic work has been carried out on hybrid structures made as a combination of welded sand castings and wrought alloys. Aim of the present study is to correlate the monotonic and cyclic deformation behavior of thin sheet welded joints with the microstructure in the heat affected zone of the material combination sand cast EN AC‐Al Si7Mg0.3 and wrought alloy EN AW‐Al Si1MgMn (EN AW‐6082). The metal sheets were welded using a metal inert gas cold metal transfer process under variation of the welding gap, the heat treatment parameters, as well as the surface finishes. It was demonstrated by Wöhler diagrams based on bending fatigue tests that the fatigue life could be increased for the welded and heat treated specimens as compared to the as‐received cast specimens. By means of optical microscopy this effect was attributed to microstructural changes due to the optimized welding and heat treatment process. A detailed analysis of the mechanical tests was possible by the application of an optical 3D strain analysis.  相似文献   

10.
In this study, T651‐applied AA7075 alloy was subjected to retrogression and re‐aging (RRA) process. Various retrogression temperatures (180 °C, 280 °C, 370 °C) and times (15 min, 30 min, 90 min) were used to determine the effects of temperature and time on the mechanical and tribological properties of the AA7075 alloy. All re‐aging stages were performed at 120 °C for 24 hours. Retrogression and re‐aging‐applied specimens were characterized by scanning electron microscope, transmission electron microscope, x‐ray diffraction, Charpy V‐notch impact and tensile tests. Brinell hardness measurements and ball‐on‐disc type tribometer measurements by using AISI 316 ball as a counterpart have also been conducted. Grain boundary precipitates in the T651‐applied specimen was transformed from continuous to the discontinuous structure after retrogression and re‐aging process. Continuous MgZn2 precipitates at grain boundaries were disintegrated and re‐precipitated along the grain boundaries. The sizes of intragranular precipitates have become coarsened by comparison with the T651 condition. Hardness, tensile strength and wear resistance were decreased whereas impact toughness values were increased with increasing retrogression temperature and time. The best wear resistance was obtained in the sample treated at 180 °C for 15 minutes.  相似文献   

11.
Plasma nitriding of aluminum alloys is a suitable method for improving wear resistance because of the hard ceramic AlN layer formed. However, the surface's load‐bearing behavior is greatly limited by the low hardness of the Al base material. New investigations regarding improved load support of the thin AlN layer examine the treatment sequence of nitriding and subsequent EB remelting. Because of its broad range of beneficial alloying elements (Si, Fe, Cu, Mg), a hypereutectic Al–Si alloy (DISPAL® S232) ? made by spray forming ? was used as the base material. The electron beam remelting process is carried out on samples with a nitride layer thickness of approx. 3 μm. As a result of the newly formed phases, grain refinement, and oversaturation of the aluminum solid solution, the surface hardness beneath the nitride layer can be increased by up to three times compared to that of the initial base material. The estimated enhancement in load support is evaluated by unlubricated wear tests using a pin‐on‐disc configuration and scratch tests under constant loading conditions. Furthermore, the wear mechanisms are investigated by means of detailed SEM examination of the remelted surface layer.
  相似文献   

12.
Investigation into strength of bolts made of ultra fine grain as well as coarse grain aluminium material AA7075 Results of investigation into strength and fracture behaviour with high level mean load of rolled 7075‐aluminiumbolts M6 are given. Bolts made of coarse grain as well as ultra fine grain structure produced by Equal Channel Angular Extrusion (ECAE) were tested. The ultimate tensile strength for both grain sizes was of a similar level. As a result of the first fatigue tests it seems that the fatigue strength of the ultra fine grain material is lower that the fatigue strength of the coarse grain material. An endurance limit of 23 MPa was found for the bolts made of coarse grain material using a modified staircase method. Furthermore, fracture behaviour of aluminium bolts is discussed.  相似文献   

13.
Crack growth and high cycle fatigue behaviour of an AA6060 aluminium alloy after ECAP combined with a subsequent heat treatment Crack growth properties of the Al‐Mg‐Si alloy AA6060 as well as the high cycle fatigue behaviour have been investigated after equal‐channel angular pressing (ECAP). In our study, experiments have been conducted on different stages of microstructural breakdown and strain hardening of the material as they were present after different numbers of ECAP passes. A bimodal condition, obtained after two pressings, and a homogeneously ultrafine‐grained condition after eight repetitive pressings have been investigated. Furthermore, optimized conditions with an enhanced ductility, produced by ECAP processing combined with a following short‐time aging treatment were included into the study. Crack growth experiments have been conducted in the near‐threshold regime and the region of stable crack growth, covering a range of load ratios from R = 0.1 up to 0.7. It was found that the lowered fatigue threshold ΔKth of the as‐extruded material can be enhanced by the combination of ECAP and short‐time aging, owing to the increased ductility and strain hardening capability of this material. By means of SEM investigations and tensile tests, the crack growth properties of the different conditions were related to microstructural and mechanical features. In fatigue tests, load reversals up to failure and the fatigue limit for an as‐extruded condition and an optimized condition after two ECAP‐passes have been compared to the coarse grained initial condition and a remarkable increase in fatigue strength was noted.  相似文献   

14.
Functional surfaces on duplex stainless steel by lasercladding The product‐lubricated axial and radial bearings installed in multistage high‐pressure pumps inevitably encounter severe mixed friction conditions as the pumps start and stop. This leads to extremely high tribological loads on the bearing components, compounded by the effects of a highly corrosive pumped fluid. The present paper describes a laser cladding process which produces near‐net‐shape coatings of new, highly corrosion and wear resistant functional layers which can be deposited directly on high‐alloy stainless steels without requiring additional buffer layers and without affecting the mechanical properties and corrosion resistance of the substrate. The results cover the solidification behaviour of the coatings as well as the microstructure resulting from various heat treatment conditions. In addition, the technological properties of the coatings and the resulting composites are discussed. The coating systems are tested as to their corrosion resistance and tribological characterization in a pump‐specific tribological system.  相似文献   

15.
The casting of different forms and dimensions of aluminium alloy EN WA‐5083 test samples and the usage of different types of mould materials resulted in achieving different cooling rates of samples. The methods used were simple thermal analysis, using casting into a measuring cell made by the Croning process and using casting into a cone‐shaped measuring cell, as well as simultaneous thermal analysis using the method of differential scanning calorimetry. Significant temperature phase transitions and times of solidification were determined, and the dependence model of the solidification time on the sample cooling rate was obtained. Determining the mean number of grains per unit area on samples after having performed the simple thermal analysis and differential scanning calorimetry makes it possible to develop a dependence model of the mean number of grains per unit area on the cooling rate. These models are the basis for carrying out numerical simulations of solidification and microstructure development in the cone‐shaped measuring cell, and the comparison of the distribution of the mean number of grains per unit area obtained by simulation with the one obtained experimentally. The obtained results represent a part of the preliminary tests of the microstructure development of industrially cast ingots of EN AW‐5083 alloy depending on the local ingot cooling rate.  相似文献   

16.
A ceramic coating on AA6082 aluminum alloy prepared by plasma electrolytic oxidation (PEO) has been studied and compared against a sulphuric acid hard-anodized coating on the same alloy. Surface morphology and microstructures of the coatings have been examined by scanning electron microscopy. X-ray diffraction is used to determine the phase composition of the coatings. The adhesion strength of the coatings has been evaluated using a scratch test method. The coating's mechanical properties such elastic modulus and hardness data have been generated using a dynamic ultra-microhardness tester. Sliding wear tests with different loading rates are performed on the coatings in order to assess their wear resistance. Test results show that the PEO treated samples exhibit significantly better mechanical properties compared to hard anodized samples. The elastic modulus and hardness of the PEO coating are 2-3 times greater than of the hard anodized coating and subsequently, an improved wear resistance of the PEO coating has been achieved. The mechanical properties of the coatings and their relations to their tribological performance are discussed.  相似文献   

17.
This paper presents the results and evaluation of the multiaxial fatigue behaviour of laserbeam‐welded overlapped tubular joints made from the artificially hardened aluminium alloy AlSi1MgMn T6 (EN AW 6082 T6) under multiaxial loadings with constant and variable amplitudes. Several fatigue test series under pure axial and pure torsional loadings as well as combined axial and torsional proportional and non‐proportional loadings have been carried out in the range of 2·104 to 2·107 cycles. The assessment of the investigated thin‐walled joints is based on a local notch stress concept. In this concept the fatigue critical area of the weld root is substituted by a fictitious notch radius rref = 0.05 mm. The equivalent stresses in the notch, considering especially the fatigue life reducing influence of non‐proportional loading in comparison to proportional loading, were calculated by a recently developed hypothesis, which is called the Stress Space Curve Hypothesis (SSCH). This hypothesis is based on the time evolution of the stress state during one load cycle. In addition, the fatigue strength evaluation of multiaxial spectrum loading was carried out using a modified Gough‐Pollard algorithm.  相似文献   

18.
An important limitation of aluminium alloys for mechanical applications is their poor tribological behaviour. In this study, surface treatment by plasma electrolytic oxidation (PEO) has been applied to two widely used aluminium alloys: A359 (hypoeutectic Al–Si–Mg) cast alloy and AA7075 (Al–Zn–Mg–Cu) wrought alloy, in order to improve their wear resistance, under sliding and abrasive wear conditions. The main aim of this work was the comparison of the properties and wear resistance of the oxide layers grown under the same PEO treatment conditions on two different aluminium alloys which might be coupled in engineered components. Significant differences in the phase composition, microstructure and mechanical properties measured by microindentation were observed in the oxide layers grown on the two substrates, and were ascribed to the effects of the different compositions and microstructures of the substrate alloys. Abrasion tests were carried out in a micro-scale abrasion (ball-cratering) test, with both alumina and silicon carbide abrasive particles. The results demonstrated the influence of the abrasive material on wear behaviour: whereas relatively aggressive SiC particles gave comparable results for both PEO treated and untreated samples, with the less aggressive Al2O3 abrasive the wear rates of the PEO treated samples, for both substrates, were significantly lower than those of the untreated substrates. In unlubricated sliding the PEO treatment significantly increase the wear resistance of both the aluminium alloys, at low applied load. In this condition the wear behaviour of the PEO treated alloys is strongly influenced by the stability of a protective Fe–O transfer layer, generated by wear damage of the steel counterpart. Under high applied loads however, the transfer layer is not stable and the hardness of the PEO layer, as well as the load bearing capacity of the substrate, become the main factors in influencing wear resistance.  相似文献   

19.
Fatigue damage characteristics of aluminium alloy under complex biaxial loads such as in‐phase and out‐of‐phase loading conditions and different biaxiality ratios have been investigated. The effects of microscale phenomena on macroscale crack growth were studied to develop an in‐depth understanding of crack nucleation and growth. Material characterization was conducted to study the microstructure variability. Scanning electron microscopy was used to identify the second phase particles, and energy dispersive X‐ray spectroscopy was performed to analyse their phases and elements. Extensive quasi‐static and fatigue tests were conducted on Al7075‐T651 cruciform specimens over a wide range of load ratios and phases. Detailed fractography analysis was conducted to understand the crack growth behaviour observed during the fatigue tests. Significant differences in crack initiation and propagation behaviour were observed when a phase difference was applied. Primarily, crack retardation and splitting were observed because of the constantly varying mode mixity caused by phase difference. The crack growth behaviour and fatigue lives under out‐of‐phase loading were compared with those under in‐phase loading to understand the effect of mixed‐mode fracture.  相似文献   

20.
Friction stir butt welding of 25 mm thick AA7075–T651 plates has been investigated. Careful process parameter selection resulted in single pass, full‐penetration defect free welds. The weld nugget exhibits a significant grain refinement while facing the dissolution of strengthening precipitates. Microhardness survey gives a W‐shaped profile with lower hardness values recorded in the thermo‐mechanically‐affected zone. Tensile fractures occur, again, in the thermo‐mechanically‐affected zone, where minimum hardness occurred. The friction stir welds demonstrate an excellent root bend performance while falling behind base material in face bend test. The welds also displayed outstanding impact toughness compared to that of parent material. It is concluded that defect free single pass friction stir welds can be successfully made on 25 mm thick AA7075–T651 plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号