首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the complex process of cheesemaking at the individual level of dairy goats because of the difficulties of producing a high number of model cheeses. The objectives of this work were (1) to study the cheesemaking ability of goat milk; (2) to investigate the variability of cheesemaking-related traits among different farms; (3) to assess the effects of stage of lactation and parity; and (4) to compare 6 breeds of goat (Saanen and Camosciata delle Alpi for the Alpine type; Murciano-Granadina, Maltese, Sarda and Sarda Primitiva for the Mediterranean type) for their cheesemaking ability. For each goat (n = 560) we studied (1) 8 milk quality traits (fat, protein, total solids, casein, lactose, pH, somatic cell score, and bacterial count); (2) 4 milk nutrient recovery traits (fat, protein, total solids, and energy) in curd; (3) 3 actual cheese yield traits (fresh cheese, cheese solids, and cheese water); (4) 2 theoretical cheese yield values (fresh cheese and cheese solids) and the related cheesemaking efficiencies; and (5) daily milk yield and 3 daily cheese yield traits (fresh cheese, cheese solids, and water retained in the curd). With respect to individual animal factors, farm was not particularly important for recovery traits or actual and theoretical cheese yield and estimates of efficiency, whereas it highly influenced daily productions. Parity of goats influenced daily cheese production, whereas DIM slightly affected recovery as well as percent and daily cheese yield traits. Breed was the most important source of variation for almost all cheesemaking traits. Compared with those of Alpine type, the 4 Mediterranean breeds had, on average, lower daily milk and cheese productions, greater actual and theoretical cheese yield, and higher recovery of nutrients in the curd. Among Alpine type, Camosciata delle Alpi was characterized by greater nutrients recovery than Saanen. Within the 4 Mediterranean types, the 3 Italians produced much less milk per day, with much more fat and protein and greater recovery traits than the Murciano-Granadina, resulting in greater actual cheese yield. Within the Italian breeds, milk from Sarda and Sarda Primitiva was characterized by lower daily yields, higher protein and fat content, and greater recoveries of nutrients than Maltese goats. These results confirmed the potential of goat milk for cheese production and could be useful to give new possibilities and direction in breeding programs.  相似文献   

2.
Natural variations in milk minerals, their relationships, and their associations with the coagulation process and cheese-making traits present an opportunity for the differentiation of milk destined for high-quality natural products, such as traditional specialties or Protected Designation of Origin (PDO) cheeses. The aim of this study was to quantify the effects of the native contents of Ca, P, Na, K, and Mg on 18 traits describing traditional milk coagulation properties (MCP), curd firming over time (CFt) equation parameters, cheese yield (CY) measures, and nutrient recoveries in the curd (REC) using models that either included or omitted the simultaneous effects of milk fat and casein contents. The results showed that, by including milk fat and casein and the minerals in the statistical model, we were able to determine the specific effects of each mineral on coagulation and cheese-making efficiency. In general, about two-thirds of the apparent effects of the minerals on MCP and the CFt equation parameters are actually mediated by their association with milk composition, especially casein content, whereas only one-third of the effects are direct and independent of milk composition. In the case of cheese-making traits, the effects of the minerals were mediated only negligibly by their association with milk composition. High Ca content had a positive effect on the coagulation pattern and cheese-making traits, favoring water retention in the curd in particular. Phosphorus positively affected the cheese-making traits in that it was associated with an increase in CY in terms of curd solids, and in all the nutrient recovery traits. However, a very high P content in milk was associated with lower fat recovery in the curd. The variation in the Na content in milk only mildly affected coagulation, whereas with regard to cheese-making, protein recovery was negatively associated with high concentrations of this mineral. Potassium seemed not to be actively involved in coagulation and the cheese-making process. Magnesium content tended to slow coagulation and reduce CY measures. Further studies on the relationships of minerals with casein and protein fractions could deepen our knowledge of the role of all minerals in coagulation and the cheese-making process.  相似文献   

3.
《Journal of dairy science》2019,102(10):8648-8657
In dairy goats, very little is known about the effect of the 2 most important indirect indicators of udder health [somatic cell count (SCC) and total bacterial count (TBC)] on milk composition and cheese yield, and no information is available regarding the effects of lactose levels, pH, and NaCl content on the recovery of nutrients in the curd, cheese yield traits, and daily cheese yields. Because large differences exist among dairy species, conclusions from the most studied species (i.e., bovine) cannot be drawn for all types of dairy-producing animals. The aims of this study were to quantify, using milk samples from 560 dairy goats, the contemporary effects of a pool of udder health indirect indicators (lactose level, pH, SCC, TBC, and NaCl content) on the recovery of nutrients in the curd (%REC), cheese yield (%CY), and daily cheese yields (dCY). Cheese-making traits were analyzed using a mixed model, with parity, days in milk (DIM), lactose level, pH, SCC, TBC, and NaCl content as fixed effects, and farm, breed, glass tube, and animal as random effects. Results indicated that high levels of milk lactose were associated with reduced total solids recovery in the curd and lower cheese yields, because of the lower milk fat and protein contents in samples rich in lactose. Higher pH correlated with higher recovery of nutrients in the curd and higher cheese yield traits. These results may be explained by the positive correlation between pH and milk fat, protein, and casein in goat milk. High SCC were associated with higher recovery of solids and energy in the curd but lower recovery of protein. The higher cheese yield obtained from milk with high SCC was due to both increased recovery of lactose in the curd and water retention. Bacterial count proved to be the least important factor affecting cheese-making traits, but it decreased daily cheese yields, suggesting that, even if below the legal limits, TBC should be considered in order to monitor flock management and avoid economic losses. The effect of NaCl content on milk composition was linked with lower recovery of all nutrients in the curd during cheese-making. In addition, high milk NaCl content led to reductions in fresh cheese yield and cheese solids. The indirect indicators of the present study significantly affected the cheese-making process. Such information should be considered, to adjust the milk-to-cheese economic value and the milk payment system.  相似文献   

4.
The aim of this study was to assess the influence of the amounts of the αS1-, αS2-, β-, and κ-casein (CN) and the α-lactalbumin and β-lactoglobulin protein fractions on the efficiency of the cheese-making process independently of their genetic polymorphisms. The study was carried out on milk samples from 1,271 Brown Swiss cows from 85 herds classified into 4 categories according to management, feeding, and housing characteristics (traditional and modern systems). To assess the efficiency of the cheese-making process, we processed the milk samples according to a laboratory cheese-making procedure (1,500 mL/sample) and obtained the following measures: (1) 3 percentage cheese yields (%CYcurd, %CYsolids, %CYwater), (2) 2 daily cheese yields obtained by multiplying %CY (curd and total solids) by daily milk yields (dCYcurd, dCYsolids), (3) 4 measures of nutrient recovery in the curd (RECfat, RECprotein, RECsolids, RECenergy), and (4) 2 measures of cheese-making efficiency in terms of the ratio between the observed and theoretical %CY (Ef-%CYcurd, Ef-%CYsolids). All the aforementioned traits were analyzed by fitting 2 linear mixed models with protein fractions as fixed effects expressed as percentage in the milk (model M-%milk) and as percentage of the total casein content (model M-%cas) together with the effects of total casein content (only in model M-%cas), daily milk yield (only in model M-%milk; not for dCY traits), dairy system, herd (random effect), days in milk, parity, and vat. The efficiency of overall cheese yield (Ef-%CYcurd) was mostly positively associated with β-CN content in the milk, whereas Ef-%CYsolids was greater with higher amounts of κ-CN and αS1-CN (M-%milk) due to the strong influence of both fractions on the recovery rate of milk components in the curd (fat and total solids, protein with αS1-CN only) when expressed as percentage of milk and of total casein; only β-CN was more important for RECprotein. In contrast, we found β-lactoglobulin to be highly negatively related to all the traits related to the cheese-making process and to the daily cheese yield per cow, whereas α-lactalbumin was positively associated with the latter traits. Additional research on this topic is needed, with particular focus on the genetic and genomic aspects of the role of protein fractions in the cheese-making process and on the associations between genetic polymorphisms in milk protein and milk nutrient recovery in the curd.  相似文献   

5.
To better exploit manufacturing facilities and standardize cheese quality, milk composition could be standardized by fortifying its protein content with a milk protein concentrate (MPC) addition so avoiding partially skimming the milk. With this aim Mozzarella cheese was obtained adding citric acid into milk standardized at 4% protein and a fat to protein ratio of 1.0. Protein fortification was obtained adding MPC produced by ultrafiltration. Milk, whey, curd, cheese and stretching water were weighed and analysed for total solid, fat and protein content, to measure component recovery and yield. Yield increase (from 13.8% to 16.7%) was due to the higher recovery of the milk total solids and proteins in MPC cheese (48.2 and 78.3%, respectively) and to the slightly higher cheese moisture, obtained with a little modification of the cheese technology when adding MPC. Milk fat in cheese was lower than that reported in literature. Hot water stretching of the curd resulted in very low losses (1%) of protein and considerable losses (14%) of fat for both control and MPC cheeses. The likely reasons of this low recovery are discussed and it can be supposed that a further cheese yield increase is possible by changing the curd stretching procedures.  相似文献   

6.
The percentage of milk fat recovered as cheese varies between 85 and 93 per cent, depending on the system used, and this must be taken into account when the casein to fat ratio of milk for cheesemaking is selected. Seasonal variation in the composition of milk protein can have a significant influence on the potential cheese yield. Prolonged storage of milk may cause casein losses while heat precipitation can facilitate the incorporation of whey proteins in cheese curd. The economic consequences of seasonal variations in Ireland on the price of milk for cheesemaking are discussed. The economics of standardisation may be marginal, but it is a useful aid in achieving uniform cheese quality.  相似文献   

7.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

8.
《Journal of dairy science》2022,105(3):2132-2152
Bovines produce about 83% of the milk and dairy products consumed by humans worldwide, the rest represented by bubaline, caprine, ovine, camelid, and equine species, which are particularly important in areas of extensive pastoralism. Although milk is increasingly used for cheese production, the cheese-making efficiency of milk from the different species is not well known. This study compares the cheese-making ability of milk sampled from lactating females of the 6 dairy species in terms of milk composition, coagulation properties (using lactodynamography), curd-firming modeling, nutrients recovered in the curd, and cheese yield (through laboratory model-cheese production). Equine (donkey) milk had the lowest fat and protein content and did not coagulate after rennet addition. Buffalo and ewe milk yielded more fresh cheese (25.5 and 22.9%, respectively) than cow, goat, and dromedary milk (15.4, 11.9, and 13.8%, respectively). This was due to the greater fat and protein contents of the former species with respect to the latter, but also to the greater recovery of fat in the curd of bubaline (88.2%) than in the curd of camelid milk (55.0%) and consequent differences in the recoveries of milk total solids and energy in the curd; protein recovery, however, was much more similar across species (from 74.7% in dromedaries to 83.7% in bovine milk). Compared with bovine milk, the milk from the other Artiodactyla species coagulated more rapidly, reached curd firmness more quickly (especially ovine milk), had a more pronounced syneresis (especially caprine milk), had a greater potential asymptotical curd firmness (except dromedary and goat milk), and reached earlier maximum curd firmness (especially caprine and ovine milk). The maximum measured curd firmness was greater for bubaline and ovine milk, intermediate for bovine and caprine milk, and lower for camelid milk. The milk of all ruminant species can be used to make cheese, but, to improve efficiency, cheese-making procedures need to be optimized to take into account the large differences in their coagulation, curd-firming, and syneresis properties.  相似文献   

9.
Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CYCURD, %CYSOLIDS, and %CYWATER, which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: RECFAT, RECPROTEIN, and RECSOLIDS, which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, RECENERGY, represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CYCURD, %CYSOLIDS, and %CYWATER ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat content (0.122), and similar to that for protein content (0.275). Daily cheese yields showed heritability estimates similar to those of daily milk yield. The trait %CYWATER showed a highly positive genetic correlation with %CYSOLIDS (0.87), whereas their phenotypic correlation was moderate (0.37), and the fat and protein contents of milk showed high genetic correlations with %CY traits. The heritability estimates of RECPROTEIN and RECFAT were larger (0.490 and 0.208, respectively) than those obtained for the protein and fat contents of milk, and the genetic relationships between RECPROTEIN and RECFAT with milk protein and fat content were low or moderate; RECPROTEIN and RECFAT were moderately correlated with the %CY traits and highly correlated with RECSOLIDS and RECENERGY. Both RECSOLIDS and RECENERGY were heritable (0.274 and 0.232), and showed high correlations with each other (0.96) and with the %CY traits (0.83 to 0.97). Together, these findings demonstrate the existence of economically important, genetically determined variability in cheese yield that does not depend solely upon the fat and protein contents of milk, but also relies on the ability of the coagulum to retain the highest possible proportions of the available protein, fat, and water. Exploitation of this interesting genetic variation does not seem to be feasible through direct measurement of the phenotype in cows at the population level. Instead, further research is warranted to examine possible means for indirect prediction, such as through assessing the mid-infrared spectra of milk samples.  相似文献   

10.
Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CYCURD, %CYSOLIDS, and %CYWATER, representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: RECFAT, RECPROTEIN, and RECSOLIDS, which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, RECENERGY, represented the energy content of the cheese compared with that in the milk. This procedure was used to process individual milk samples obtained from 1,167 Brown Swiss cows reared in 85 herds of the province of Trento (Italy). The assessed traits exhibited almost normal distributions, with the exception of RECFAT. The average values (± SD) were as follows: %CYCURD = 14.97 ± 1.86, %CYSOLIDS = 7.18 ± 0.92, %CYWATER = 7.77 ± 1.27, dCYCURD = 3.63 ± 1.17, dCYSOLIDS = 1.74 ± 0.57, dCYWATER = 1.88 ± 0.63, RECFAT = 89.79 ± 3.55, RECPROTEIN = 78.08 ± 2.43, RECSOLIDS = 51.88 ± 3.52, and RECENERGY = 67.19 ± 3.29. All traits were highly influenced by herd-test-date and days in milk of the cow, moderately influenced by parity, and weakly influenced by the utilized vat. Both %CYCURD and dCYCURD depended not only on the fat and protein (casein) contents of the milk, but also on their proportions retained in the curd; the water trapped in curd presented an higher variability than that of %CYSOLIDS. All REC traits were variable and affected by days in milk and parity of the cows. The described model cheese-making procedure and the results obtained provided new insight into the phenotypic variation of cheese yield and recovery traits at the individual level.  相似文献   

11.
《Journal of dairy science》2022,105(8):6724-6738
At the global level, the quantity of goat milk produced and its gross production value have increased considerably over the last 2 decades. Although many scientific papers on this topic have been published, few studies have been carried out on bulk goat milk samples. The aim of the present study was to investigate in the field the effects of farming system, breed type, individual flock, and stage of production on the composition, coagulation properties (MCP), curd firming over time parameters (CFt), predicted cheese yield (CY%), and nutrient recovery traits (REC) of 432 bulk milk samples from 161 commercial goat farms in Sardinia, Italy. We found that the variance due to individual flock was of the same order as the residual variance for almost all composition and cheesemaking traits. With regard to the fixed effects, the effect of farming system on bulk milk variability was not highly significant for the majority of traits (it was lower than individual flock), whereas the effects of breed type and stage of production were much higher. More specifically, the intensive farms produced milk with the best concentrations of almost all constituents, whereas extensive farms exhibited faster rennet coagulation times, a slower rate of curd firming, lower potential curd firmness, and lower percentages of fat and energy recoveries in the fresh curd. Farms rearing the local breed, Sarda, alone or together with the Maltese breed, produced milk with the best concentrations of fat and protein, superior curd firmness, and better predicted percentage of fresh curd (CYCURD) and recovery traits. The results show the potential of both types of breed, either for their quantitative (specialized breeds) or their qualitative (local breeds) attributes. As expected, the concentrations of fat, protein fractions, and lactose were influenced by the stage of production, with samples collected in the early stage of production (in February and March) having a greater quantity of the main constituents. Somatic cells reached the highest levels in the late stage of production, which corresponds to the goats' advanced stage of lactation (June–July), although no differences were present in the logarithmic bacterial counts between the early and late stages. Regarding cheesemaking potential, bulk milk samples of the late stage were characterized by delayed rennet coagulation and curd firming times, the lowest values of curd firmness, and a general reduction in CY%, and REC traits. In conclusion, we highlight several issues regarding the effects of the most important sources of variation on bulk goat milk, and point to some critical factors relevant for improving dairy goat farming and milk production.  相似文献   

12.
A hard-pressed, brined cheese was produced from frozen ovine milk collected in February, May, and August. Solids in the milk decreased as the season progressed. This was a result of high solids in early-lactation milk and low solids in August milk because of hot weather and poorer quality pastures. Casein as a percentage of true protein and the casein to fat ratio were higher in May and August milk. Fat in the cheese from February milk was higher and total protein was lower than in May and August. Milk, whey, and press whey composition were influenced by season and followed the trends of milk composition. Fat recovery in the cheeses ranged from 83.2 to 84.2%. Protein recovery in the cheeses was not affected by season. Cheese yield from February milk was higher than from May and August milk and was a result of higher casein and fat in the milk.  相似文献   

13.
Very diverse cutting and cooking intensity processes are currently used in small artisan dairies to manufacture Idiazabal cheese. The combination of the technical settings used during cheese manufacturing is known to affect cheese composition and yield, as well as whey losses. However, the information regarding the effect on microstructure and texture of cheese is scarce, especially in commercial productions. Therefore, the effect of moderate- and high-intensity cutting and cooking processes on whey losses, curd-grain characteristics, microstructure and cheese properties, and yield were analyzed. Three trials were monitored in each of 2 different small dairies during the cheesemaking of Idiazabal cheese, which is a semihard cheese made from raw sheep milk. The role and know-how of the cheesemakers are crucial in these productions because they determine the cutting point and handle semi-automatic vats. The 2 dairies studied used the following settings: dairy A used moderate-intensity cutting and cooking conditions, and dairy B used high-intensity cutting and cooking settings. Multiple relationships between cheese-processing conditions and curd, whey, and cheese properties as well as yield were obtained from a partial least square regression analysis. An increased amount of fat and casein losses were generated due to a combination of an excessively firm gel at cutting point together with high-intensity cutting and cooking processes. The microstructural analysis revealed that the porosity of the protein matrix of curd grains after cooking and cheese after pressing was the main feature affected, developing a less porous structure with a more intense process. Moderate-intensity cutting and cooking processes were associated with a higher cheese yield, regardless of the longer pressing process applied. No significant differences were observed in cheese composition. After 1 mo of ripening, however, the cheese was more brittle and adhesive when the high-intensity cutting and cooking process was applied. This could be associated with the composition, characteristics, and size distribution of curd grains due to differences in the compaction degree during pressing. These results could help to modify specific conditions used in cheesemaking, especially improving the process in those small dairies where the role of the cheesemaker is crucial.  相似文献   

14.
Twenty-nine multiparous cows of each of the Jersey and Friesian breeds, all kappa-casein AB phenotype, were grazed together and managed identically. On three occasions during 10 d in spring (early lactation), milk was collected from all cows at four consecutive milkings and bulked according to breed. On a separate occasion, milk samples were also collected from each cow at consecutive a.m. and p.m. milkings to form one daily sample per cow. The bulked milks (800-1000 l per breed on each occasion) were standardized to a protein:fat (P:F) ratio of 0.80, and 350 l from each breed was made into Cheddar cheese. The solids content of the remaining Friesian milk was then increased by ultrafiltration to a solids concentration equal to that of the Jersey milk. This solids-standardized Friesian milk and a replicate batch of P:F standardized Jersey milk were made into two further batches of Cheddar cheese in 350-l vats. Compared with Friesian milk, Jersey milk had higher concentrations of most milk components measured, including protein, casein and fat. There were few difference in milk protein composition between breeds, but there were differences in fat composition. Friesian milk fat had more conjugated linoleic acid (CLA) than Jersey milk fat. Jersey milk coagulated faster and formed firmer curd than Friesian milk. Concentrations of some milk components were correlated with coagulation parameters, but relationships did not allow prediction of cheesemaking potential. Jersey milk yielded 10% more cheese per kg than Friesian milk using P:F standardized milk, but for milks with the same solids concentration there were no differences in cheese yield. No differences in cheese composition between breeds were detected. Differences in cheesemaking properties of milk from Jerseys and Friesians were entirely related to the concentrations of solids in the original milk.  相似文献   

15.
The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.  相似文献   

16.
The effects of sheep alpha s1-casein CC, CD and DD genotypes on milk composition and cheese yield were studied. Processed bulk milk was collected from three groups of 15 ewes, carrying alpha s1-casein CC, CD and DD genotypes. CC milk was higher in casein content than CD or DD milk (+3.5 and +8.6% respectively), and had a higher protein: fat ratio and a smaller casein micelle diameter. In addition, DD milk had a significantly lower alpha s1-casein content. The main differences were in curd formation: CC milk had better renneting properties. Cheesemaking trials, carried out in a pilot plant, showed that CC milk had better cheesemaking characteristics than DD milk, while CD milk was intermediate. Both 1 d old and fully ripened cheeses had different fat: dry matter ratios and alpha s1-I-casein electrophoretic mobilities: these were lower for DD cheese. As a consequence, these genotypes could be considered as markers of milk and/or cheese quality.  相似文献   

17.
18.
Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was <100%; the mean was 99.51% (N × 6.31). The mean predicted yield was only 99.17% as a percentage of actual yields (PY%AY); PY%AY is a useful term for comparisons of yields among vats. The PY%AY correlated positively with the sum of components (SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction. Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion, protein-associated milk salts, and whey solids could be used and reduced the complexity of the General formula. Normalization of fat recovery increased variability of predicted yields.  相似文献   

19.
A study was undertaken to define the seasonal changes in the efficiency of recovery of milk fat and protein in curd during Cheddar cheese manufacture, and to examine the milk compositional factors that may contribute to these effects. Distinct seasonal trends in the efficiency of conversion of milk fat and protein to cheese were noted. Variations in the retention of milk fat in curd could be associated with seasonal changes in the casein to fat ratio of the milk.  相似文献   

20.
The pH of cheese is determined by the amount of lactose fermented and the buffering capacity of the cheese. The buffering capacity of cheese is largely determined by the protein contents of milk and cheese and the amount of insoluble calcium phosphate in the curd, which is related to the rate of acidification. The objective of this study was to standardize both the lactose and casein contents of milk to better control final pH and prevent the development of excessive acidity in Cheddar cheese. This approach involved the use of low-concentration factor ultrafiltration of milk to increase the casein content (~5%), followed by the addition of water, ultrafiltration permeate, or both to the retentate to adjust the lactose content. We evaluated milks with 4 different lactose-to-casein ratios (L:CN): 1.8 (control milk), 1.4, 1.1, and 0.9. All cheesemilks had similar total casein (2.3%) and fat (3.4%) contents. These milks were used to make milled-curd Cheddar cheese, and we evaluated cheese composition, texture, functionality, and sensory properties over 9 mo of ripening. Cheeses made from milks with varying levels of L:CN had similar moisture, protein, fat, and salt contents, due to slight modifications during manufacture (i.e., cutting the gel at a smaller size than control) as well as control of acid development at critical steps (i.e., cutting the gel, whey drainage, salting). As expected, decreasing the L:CN led to cheeses with lower lactic acid, residual lactose, and insoluble Ca contents, as well as a substantial pH increase during cheese ripening in cheeses. The L:CN ratio had no significant effect on the levels of primary and secondary proteolysis. Texture profile analysis showed no significant differences in hardness values during ripening. Maximum loss tangent, an index of cheese meltability, was lower until 45 d for the L:CN 1.4 and 0.9 treatments, but after 45 d, all reduced L:CN cheeses had higher maximum loss tangent values than the control cheese (L:CN 1.8). Sensory analyses showed that cheeses made from milks with reduced L:CN contents had lower acidity, sourness, sulfury notes, and chewdown cohesiveness. Standardization of milk to a specific L:CN ratio, while maintaining a constant casein level in the milk, would allow Cheddar cheese manufacturers to have tighter control of pH and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号