首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(6):1215-1230
Abstract

The potential to remove copper (II) ions from aqueous solutions using Na‐mordenite, a common zeolite mineral, was thoroughly investigated. The effects of relevant parameters solution pH, adsorbent dose, ionic strength, and temperature on copper (II) adsorption capacity were examined. The sorption data followed the Langmuir, Freundlich, and Dubinin‐Radushkevich (D‐R) isotherms. The maximum sorption capacity was found to be 10.69 mg/g at pH 6, initial concentration of 40 mg/dm3, and temperature of 40°C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) have also been evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The dynamics of the sorption process were studied and the values of rate constant of adsorption, rate constant of intraparticle diffusion were calculated. The activation energy (Ea) was found to be 11.25 kJ/mol in the present study, indicating a chemical sorption process involving weak interactions between sorbent and sorbate. The interaction between copper (II) ions and Na‐mordenite is mainly attributable to ion exchange. The sorption capacity increased with the increase of solution pH and the decrease of ionic strength and adsorbent dose. The Na‐mordenite can be used to separate copper (II) ions from aqueous solutions.  相似文献   

2.
In the present study, PS@α‐Fe2O3 nanocomposites were prepared by chemical microemulsion polymerization approach and the ability of magnetic beads to remove Cu(II) ions from aqueous solutions in a batch media was investigated. Various physico‐chemical parameters such as pH, initial metal ion concentration, temperature, and equilibrium contact time were also studied. Adsorption mechanism of Cu2+ ions onto magnetic polymeric adsorbents has been investigated using Langmuir, Freundlich, Sips and Redlich–Petersen isotherms. The results demonstrated that the PS@α‐Fe2O3 nanocomposite is an effective adsorbent for Cu2+ ions removal. The Sips adsorption isotherm model (R2 > 0.99) was more in consistence with the adsorption isotherm data of Cu(II) ions compared to other models and the maximum adsorbed amount of copper was 34.25 mg/g. The adsorption kinetics well fitted to a pseudo second‐order kinetic model. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that copper adsorption was a spontaneous and exothermic process. POLYM. ENG. SCI., 55:2735–2742, 2015. © 2015 Society of Plastics Engineers  相似文献   

3.
In this study, a novel selective Au(III) chelating surface ion imprinted fibers based on phenyl thiosemicarbazide modified natural cotton (Au‐C‐PTS) has been synthesized, and applied for selective removal of Au(III) from aqueous solutions. Batch adsorption experiments were performed with various parameters, such as contact time, pH, initial Au(III) concentration, and temperature. The kinetic studies revealed that the adsorption process could be described by pseudo‐second‐order kinetic model, while the adsorption data correlated well with the Langmuir and Freundlich models. The maximum adsorption capacities calculated from the Langmuir equation are 140 ± 1 mg g?1 and 72 ± 1 mg g?1 at pH 5 for both Au‐C‐PTS and NI‐C‐PTS, respectively. The estimated thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy change (ΔS°)) indicated the spontaneity and exothermic nature of the adsorption process. Furthermore, the selectivity study revealed that the ion imprinted fibers was highly selective to Au(III) compared with Cu(II), Cd(II), Hg(II), and Fe(III). The adsorbent was successfully regenerated with a 0.1M HNO3 solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40769.  相似文献   

4.
This study examined the effectiveness of a new adsorbent prepared from banana (Musa paradisiaca) stalk, one of the abundantly available lignocellulosic agrowastes, in removing Pb(II) and Cd(II) ions from aqueous solutions. The adsorbent (PGBS‐COOH) having a carboxylate functional group at its chain end was synthesized by graft copolymerization of acrylamide on to banana stalk, followed by functionalization. Batch adsorption experiments were carried out as a function of solution pH, ionic strength, contact time, metal concentration, adsorbent dose and temperature. A pH range of 5.5–8.0 was found to be effective for the maximum removal for both Pb(II) and Cd(II). Metal uptake was found to decrease with increase in ionic strength due to the expansion of the diffuse double layer and, more importantly, the formation of some chloro complexes (since NaCl was used in the adjustment of ionic strength), which do not appear to be adsorbed to the same extent as cations [M2+ and M(OH)+]. The kinetic studies showed that an equilibrium time of 3 h was needed for the adsorption of Pb(II) and Cd(II) on PGBS‐COOH and adsorption processes followed a pseudo‐second‐order equation. The Langmuir isotherm model fitted the experimental equilibrium data well. The maximum sorption capacity for Pb(II) and Cd(II) ions was 185.34 and 65.88 mg g?1, respectively, at 30 °C. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were derived to predict the nature of adsorption. The isosteric heat of adsorption was found to be independent of surface coverage. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC‐50, for comparison. Synthetic wastewater samples were treated with the adsorbent to demonstrate its efficiency in removing Pb(II) and Cd(II) ions from industrial wastewaters. Acid regeneration was tried for several cycles with a view to recovering the sorbed metal ions and also restoring the sorbent to its original state. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
An investigation was conducted on the adsorption and desorption of copper(II) from aqueous solutions with a new spherical cellulose adsorbent containing the carboxyl anionic group. Various factors affecting the adsorption were optimized. The adsorption of Cu2+ ions on the adsorbent was found to be dependent on the initial time and pH, the concentration, and the temperature. The adsorption process follows both Freundlich and Langmuir adsorption isotherms and was found to be endothermic (ΔH = 23.99 kJ/mol). The Cu2+ ions adsorbed on the adsorbent can be recovered with a NaOH or HCl aqueous solution. The maximum percentage of recovery is about 100% when 2.4 mol/L HCl solution is used. In addition, only 7.2% of the adsorption capacity is lost after 30 replications of the adsorption and desorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 478–485, 2002; DOI 10.1002/app.10114  相似文献   

7.
The most commonly applied methods for the treatment of used adsorbents is to recover them in acid/alkaline medium or direct enflame them. This work dealt with a new potential and economic method to utilize a waste adsorbent. Poly(AAc/AM/SH) superabsorbent hydrogels have proved to be a good adsorbent for Cu2+ ions and after adsorption the hydrogels were recovered in acid medium. In this report, the Cu2+ ion adsorbed hydrogel has not undergone any regeneration process and applied directly to phosphate ion adsorption. The Cu2+ ions‐loaded poly(AAc/AM/SH) hydrogels, were stable within a wide pH range and suitable for phosphate ion adsorption. The factors affecting the phosphate adsorption, such as pH, ionic strength, contact time, temperature, initial concentration of the phosphate ion, and coexisting ions were systematically investigated. The phosphate adsorption was highly pH dependent; and the maximum adsorption of 87.62 mg/g was achieved at pH 6.1. The adsorption data fitted the Langmuir adsorption isotherm better than the Freundlich isotherm. The concomitant anions show profounder adverse influence on phosphate ion adsorption of poly(AAc/AM/SH)‐Cu hydrogel and the effect follows the order citrate > sulfate > bicarbonate > chloride > nitrate. The thermodynamic parameters including ΔH°, ΔG°, and ΔS° for the adsorption processes of phosphate ions on the gel were also evaluated, and the negative ΔG° and ΔH° confirmed that the adsorption process was spontaneous and exothermic. The adsorption kinetic results suggest that the adsorption process was well described by the pseudo second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Adsorption of phenol from aqueous solution onto cashew nut shell (CNS) was investigated to assess the possible use of this adsorbent. The influence of various parameters such as contact time, phenol concentration, adsorbent dose, pH, and temperature has been studied. Studies showed that the pH of aqueous solutions affected phenol removal as a result of decrease in removal efficiency with increasing solution pH. The experimental data were analysed by the Langmuir equation. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 5.405 mg/g. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° have also been evaluated and it has been found that the sorption process was feasible, spontaneous, and exothermic in nature. The pseudo‐first‐order and pseudo‐second‐order kinetic models were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phenol could be described by the pseudo‐second‐order equation, suggesting that the adsorption process is presumable a chemisorption. The CNS investigated in this study showed good application potential for the removal of phenol from aqueous solution.  相似文献   

9.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

10.
A sequence of semi‐interpenetrating polymer network (semi‐IPN) were synthesized by free radical photo copolymerizing acrylic acid and isopropyl acrylamide (NIPAAm) in aqueous sodium alginate (NaAlg). Their structures (FT‐IR), thermal stability (TG/DTG), morphology (SEM), mechanical properties, reactive blue 4 (RB 4) dye adsorption (624 mg/g) and its dying characteristics, reusability of dye and adsorbent were evaluated. TG thermograms of semi‐IPN in air revealed zero order kinetics for initial step thermal degradation with an activation energy of 68.68 kJ/mol. Dye adsorption showed best fit for Langmuir adsorption isotherm and the kinetics followed pseudo‐second‐order model. The water and dye diffusion kinetics followed non‐Fickian mechanism. The changes in thermodynamic parameters namely Gibbs free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated that the adsorption was spontaneous and exothermic process for RB 4/semi‐IPN system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40968.  相似文献   

11.
Functionalized polymeric microbeads were investigated as adsorbent for the removal of three direct dyes from aqueous solutions. The effects of different experimental parameters, such as initial dye concentration, temperature, and solution pH on the adsorption process were investigated. The adsorption process can be conducted with very good result at normal working conditions: neutral pH and normal temperature. The maximum percentage removal obtained was 99.11% for the symmetrical disazo dye, 90.14% for asymmetrical disazo dye, and 98.53% for trisazo dye. The adsorption kinetics followed the pseudo‐second‐order equation for all three investigated dyes in all working conditions. The experimental data were fitted to Langmuir, Freundlich, Sips, and Redlich–Peterson isotherm models, and the best fit was obtained with Sips model. Thermodynamic parameters (ΔH°, ΔS°, and ΔG°) revealed that dye adsorption is an endothermic and spontaneous process. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Iron(III)‐loaded carboxylated polyacrylamide‐grafted sawdust was investigated as an adsorbent for the removal of phosphate from water and wastewater. The carboxylated polyacrylamide‐grafted sawdust was prepared by graft copolymerization of acrylamide and N,N′‐methylenebisacrylamide onto sawdust in the presence of an initiator, potassium peroxydisulfate. Iron(III) was strongly attached to the carboxylic acid moiety of the adsorbent. The adsorbent material exhibits a very high adsorption potential for phosphate ions. The coordinated unsaturated sites of the iron(III) complex of polymerized sawdust were considered to be the adsorption sites for phosphate ions, the predominating species being H2PO ions. Maximum removal of 97.6 and 90.3% with 2 g L?1 of the adsorbent was observed at pH 2.5 for an initial phosphate concentration of 100 and 250 μmol L?1, respectively. The adsorption process follows second‐order kinetics. Adsorption rate constants as a function of concentration and temperature and kinetic parameters, such as ΔG±, ΔH±, and ΔS±, were calculated to predict the nature of adsorption. The L‐type adsorption isotherm obtained in the sorbent indicated a favorable process and fitted the Langmuir equation model well. The adsorption capacity calculated by the Langmuir adsorption isotherm gave 3.03 × 10?4 mol g?1 of phosphate removal at 30°C and pH 2.5. The isosteric heat of adsorption was also determined at various surface loadings of the adsorbent. The adsorption efficiency toward phosphate removal was tested using industrial wastewater. Different reagents were tested for extracting phosphate ions from the spent adsorbent. About 98.2% of phosphate can be recovered from the adsorbent using 0.1M NaOH. Alkali regeneration was tried for several cycles with a view to recover the adsorbed phosphate and also to restore the adsorbent to its original state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2541–2553, 2002  相似文献   

13.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

14.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

15.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

16.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

17.
Three novel magnetic adsorbents were synthesized through the immobilization of di-, tri-, and tetraamine onto the surface of silica coated magnetite nanoparticles. The adsorbents were characterized by XRD patterns, FTIR spectroscopy, elemental and thermogravimetric analysis, magnetic measurements, SEM/TEM, EDX spectroscopy, and N2 adsorption/desorption isotherms. Their capacity to remove copper ions from aqueous solutions was investigated and discussed comparatively. The equilibrium data were analyzed using Langmuir and Freundlich isotherms. The kinetics was evaluated using the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The best interpretation for the equilibrium data was given by the Langmuir isotherm for the tri- and tetraamine functionalized adsorbents, while for the diamine functionalized adsorbent the Freundlich model seemed to be better. The kinetic data were well fitted to the pseudo-second-order model. The overall rate of adsorption was significantly influenced by external mass transfer and intraparticle diffusion. It was observed that the adsorption capacity at room temperature decreased as the length of polyamine chain immobilized on the adsorbent surface increased, the maximum adsorption capacities being 52.3 mg g?1 for 1,3-diaminopropan functionalized adsorbent, 44.2 mg g?1 for diethylenetriamine functionalized adsorbent, and 39.2 mg g?1 for triethylenetetramine functionalized adsorbent. The sorption process proved to be highly dependent of pH. The results of the present work recommend these materials as potential candidates for copper removal from aqueous solutions.  相似文献   

18.
Carbon nanotubes (CNTs) were used as adsorbent to remove fulvic acids (FA) from aqueous solutions. The adsorption capacity of CNTs for FA can reach 24 mg g?1 at 5 °C and equilibrium concentration of 18 mg dm?3. The kinetic and thermodynamic parameters, such as rate of adsorption, standard free energy changes (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0), have been obtained. Acidic conditions (pH = 2–5) favor FA removal. An increase in the ionic strength or the addition of divalent cations increase the adsorption of FA dramatically (FA = 60 mg dm?3). An increase in the maximum adsorbed amount of FA was observed when treating FA in synthetic seawater. Desorption studies reveal that FA can be easily and quickly removed from CNTs by altering the pH values of the solution. Good adsorption capacity and quick desorption indicate that CNTs are a promising adsorbent to remove FA from aqueous solutions. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

20.
BACKGROUND: In this study, the capability of low‐cost, renewable and abundant marine biomass Posidonia oceanica (L.) for adsorptive removal of anionic and non‐ionic surfactants from aqueous solutions have been carried out in batch mode. Several experimental key parameters were investigated including exposure time, pH, temperature and initial surfactant concentration. RESULTS: It was found that the highest surfactant adsorption capacities reached at 30 °C were determined as 2.77 mg g?1 for anionic NaDBS and as 1.81 mg g?1 for non‐ionic TX‐100, both at pH 2. The biosorption process was revealed as a thermo‐dependent phenomenon. Equilibrium data were well described by the Langmuir isotherm model, suggesting therefore a homogeneous sorption surface with active sites of similar affinities. The thermodynamic constants of the adsorption process (i.e. ΔG°, ΔH° and ΔS°) were respectively evaluated as ? 8.28 kJ mol?1, 48.07 kJ mol?1 and ? 42.38 J mol?1 K?1 for NaDBS and ? 9.67 kJ mol?1, 95.13 kJ mol?1 and ? 174.09 J mol?1 K?1 for TX‐100. CONCLUSION: Based on this research, valorization of highly available Posidonia oceanica biomass, as biological adsorbent to remove anionic and non‐ionic surfactants, seems to be a promising technique, since the sorption systems studied were found to be favourable, endothermic and spontaneous. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号