首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The differences between harmonics and multi-charged peaks in mass spectrometry are often not obvious. This work conducts experiments using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to investigate the difference between harmonics and multi-charged peaks for the first time. In particular, organometallic compounds, which were characterized by the isotope distribution in ESI, were investigated in detail. A comparison of the peaks of the three charges with the three frequency doubling results at high-resolution mass spectra demonstrated that these peaks may be clearly differentiated from one another. Fullerene (C60) was characterized using APCI in the negative mode by FTICR MS provided further evidence. In addition, harmonics are unavoidable, but can be relatively weakened. These results are helpful to obtain accurate and comprehensive spectral information from FTICR MS.  相似文献   

3.
This article reviews recent literature on current methodologies based on chromatography coupled to mass spectrometry to analyze phenolic compounds with endocrine‐disrupting capabilities. For this review we chose alkylphenol ethoxylates, bisphenol A, bisphenol F, and their degradation products and halogenated derivatives, which are considered important environmental contaminants. Additionally, some related compounds such as bisphenol diglycidylethers were included. Growing attention has been paid to the mass spectrometric characterization of these compounds and the instrumentation and strategies used for their quantification and confirmation. The current use of gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry (LC–MS) methodologies with different mass spectrometers and ionization and monitoring modes is discussed. Practical aspects with regards to the use of these analytical techniques, such as derivatizing reagents in GC–MS, ion suppression in LC–MS, and the most problematic aspects of quantification, are included in the discussion. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:776–805, 2010  相似文献   

4.
The application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to the structural elucidation of oligosaccharides is described. This review covers the analyses of oligosaccharides in the context of the unique features of FTICR MS and the improvements in instrumentation that make it possible to study this class of compounds. It consists of work performed initially to understand the fundamental aspects of oligosaccharide ionization and unimolecular fragmentation. More recent investigation includes the application of the technique to samples of direct biological origin. Chemical and enzymatic degradation methods in conjunction with mass spectrometry (MS) and the use front-end methods with FTICR MS are also discussed. The current applications including the characterization of bacterial lipooligosaccharides and phosporylated carbohydrates are described.  相似文献   

5.
掌握串联质谱中的裂解反应是深刻理解质谱裂解规律,从而对复杂基体中相关化合物进行快速、精准结构解析的关键。本文以电喷雾萃取电离-串联质谱(EESI-MS/MS)为手段,研究N,N-二乙基苯胺类化合物的串联质谱行为,考察不同的取代基模式对裂解反应的影响,揭示裂解反应机理,总结该类化合物发生裂解反应的特征和基本规律。研究结果不仅丰富了气相离子化学的研究内容,还从根本上降低了检测的假阳性率,为实际样品中相关化合物的结构分析鉴定提供了科学依据。  相似文献   

6.
质谱动力学方法(Kinetic Method,简称KM法)是一种基于经质量选择的簇离子竞争解离反应速率的不同对热力学数据进行测定的方法,由于采用串联质谱技术,分析样品无需纯化,具有简便、快速、灵敏等优点。目前该方法已应用于气相酸碱度和质子亲合势的测定、电子亲和能的测定、电离能的测定、多电荷生物分子气相碱度的测定、金属离子与生物分子亲和力的测定、异裂离解能的测定、离子结构的检测及对手性化合物对映体过量的测定等。本工作在介绍质谱动力学方法原理的同时,列举了其应用实例,详细地对质谱动力学方法进行了综合述评。  相似文献   

7.
Among the different techniques for mass analysis, ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) is the method of choice for highly complex samples, as it offers unrivaled mass accuracy and resolving power, combined with a high degree of flexibility in hybrid instruments as well as for ion activation techniques. FTICR instruments are readily embraced by the biological and biomedical research communities and applied over a wide range of applications for the analysis of biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In the field of natural organic matter (NOM) analysis, petroleum-related studies currently dominate FTICR-MS applications. Recently, however, there is a growing interest in developing high-performance MS methods for the characterization of NOM samples from natural aquatic and terrestrial environments. Here, we present an overview of FTICR-MS techniques for complex, non-petroleum NOM samples, including data analysis and novel tandem mass spectrometry (MS/MS) methods for structural classifications. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.  相似文献   

8.
The development of new ion activation techniques continues to be a dynamic area of scientific discovery, in part to complement the tremendous innovations in ionization methods that have allowed the mass spectrometric analysis of an enormous array of molecules. Ion activation/dissociation provides key information about ion structures, binding energies, and differentiation of isomers, as well as affording a primary means of identifying compounds in mixtures. Numerous new activation methods have emerged over the past two decades in an effort to develop alternatives to collisional activated dissociation, the gold standard for providing structurally diagnostic fragmentation patterns. Collisional activated dissociation does not always offer sufficiently high or controllable energy deposition, thus rendering it less useful for certain classes of molecules, such as large proteins or macromolecular complexes. Photodissociation is one of the most promising alternatives and is readily implemented in ion trapping and time‐of‐flight mass spectrometers. Photodissociation generally entails using a laser to irradiate ions with UV, visible, or IR photons, thus resulting in internal energy deposition based on the number and wavelengths of the photons. The activation process can be extremely rapid and efficient, as well as having the potential for high total energy deposition. This review describes infrared multiphoton dissociation in quadrupole ion trap mass spectrometry. A comparison of photodissociation and collisional activated dissociation is covered, in addition to some of the methods to increase photodissociation efficiency. Numerous applications of IRMPD are discussed as well, including ones related to the analysis of drugs, peptides, nucleic acids, and oligosaccharides. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:390–424, 2009  相似文献   

9.
The electrodynamic ion funnel has enabled the manipulation and focusing of ions in a pressure regime (0.1–30 Torr) that has challenged traditional approaches, and provided the basis for much greater mass spectrometer ion transmission efficiencies. The initial ion funnel implementations aimed to efficiently capture ions in the expanding gas jet of an electrospray ionization interface and radially focus them for efficient transfer through a conductance limiting orifice. We review the improvements in fundamental understanding of ion motion in ion funnels, the evolution in its implementations that have brought the ion funnel to its current state of refinement, as well as applications of the ion funnel for purposes such as ion trapping, ion cooling, low pressure electrospray, and ion mobility spectrometry. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:294–312, 2010  相似文献   

10.
Blackbody infrared radiative dissociation (BIRD) describes the observation of ion-dissociation reactions at essentially zero pressure by the ambient blackbody radiation field, which is usually studied in the ion-trapping ion cyclotron resonance (ICR) mass spectrometer. A brief summary of the historical context and evolution is provided. Focussing on the quantitative observation of the temperature dependence of BIRD rates, methods are developed for connecting BIRD observations with activation parameters and dissociation thermochemistry. Three regimes are differentiated and described, comprising large molecules, small molecules, and intermediate-sized molecules. The different approaches to interpreting BIRD kinetics in those three regimes are discussed. In less than a decade since its inception, this approach to studying gas-phase ions has spread over a wide variety of applications, which are surveyed. Some major areas of activity are: the characterization of solvent-molecule detachment from solvated ions; dissociation reactions of biomolecules (polypeptides, oligonucleotides, complexes involving polysaccharides) and the structural information to be deduced from them; and dissociations of proton-bound and metal-ion-containing complexes. Studies of blackbody-radiation-driven evaporation of water molecules from large water-cluster ions are surveyed briefly. Several techniques related to BIRD are noted, including collisional dissociation in the FT-ICR ion trap; high-pressure thermal dissociation in quadrupole ion traps and in heated inlet capillary regions; hot-filament-assisted dissociation; and infrared multiphoton dissociation (IRMPD).  相似文献   

11.
This review of mass spectrometry of sulfonylurea herbicides includes a focus on studies relevant to Canadian Prairie waters. Emphasis is given to data gaps in the literature for the rates of photolysis of selected sulfonylurea herbicides in different water matrices. Specifically, results are evaluated for positive ion electrospray tandem mass spectrometry with liquid chromatography separation for the study of the photolysis of chlorsulfuron, tribenuron‐methyl, thifensulfuron‐methyl, metsulfuron‐methyl, and ethametsulfuron‐methyl. LC–MS/MS is shown to be the method of choice for the quantification of sulfonylurea herbicides with instrumental detection limits ranging from 1.3 to 7.2 pg (on‐column). Tandem mass spectrometry coupled with the use of authentic standards likewise has proven to be well suited for the identification of transformation products. To date, however, the power of time‐of‐flight MS and ultrahigh resolution MS has not been exploited fully for the identification of unknown photolysis products. Dissipation of the herbicides under natural sunlight fit pseudo‐first‐order kinetics with half‐life values ranging from 4.4 to 99 days. For simulated sunlight, radiation wavelengths shorter than 400 nm are required to induce significant photolytic reactions. The correlation between field dissipation studies and laboratory photolysis experiments suggests that photolysis is a major pathway for the dissipation of some sulfonylurea herbicides in natural Prairie waters. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:593–605, 2010  相似文献   

12.
The role of electron capture dissociation in biomolecular analysis   总被引:12,自引:0,他引:12  
The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed.  相似文献   

13.
Analysis of pesticides and their metabolites in food and water matrices continues to be an active research area closely related to food safety and environmental issues. This review discusses the most widely applied mass spectrometric (MS) approaches to pesticide residues analysis over the last few years. The main techniques for sample preparation remain solvent extraction and solid‐phase extraction. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) approach is being increasingly used for the development of multi‐class pesticide residues methods in various sample matrices. MS detectors—triple quadrupole (QqQ), ion‐trap (IT), quadrupole linear ion trap (QqLIT), time‐of‐flight (TOF), and quadrupole time‐of‐flight (QqTOF)—have been established as powerful analytical tools sharing a primary role in the detection/quantification and/or identification/confirmation of pesticides and their metabolites. Recent developments in analytical instrumentation have enabled coupling of ultra‐performance liquid chromatography (UPLC) and fast gas chromatography (GC) with MS detectors, and faster analysis for a greater number of pesticides. The newly developed “ambient‐ionization” MS techniques (e.g., desorption electrospray ionization, DESI, and direct analysis in real time, DART) hyphenated with high‐resolution MS platforms without liquid chromatography separation, and sometimes with minimum pre‐treatment, have shown potential for pesticide residue screening. The recently introduced Orbitrap mass spectrometers can provide high resolving power and mass accuracy, to tackle complex analytical problems involved in pesticide residue analysis. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 30:907–939, 2011  相似文献   

14.
This short account outlines the sources of thermochemical data that are important for gas phase ion chemistry. It describes some of the relationships that have been identified for the empirical estimation of enthalpies among neutral molecules, free radicals, and odd and even electron ions. For neutral species, the additivity principle works well and this has been developed to cover a very wide range of structures and isomers. Ionization energies of homologous species depend inversely on molecular size, allowing estimates to be made for missing members. For ions, the effect of a group substitution (such as replacing a hydrogen atom by, e.g., a methyl or hydroxyl group) can easily be estimated, but such results are strongly dependent upon the position of the charge site, relative to that of the substitution. Special emphasis is given to the reliability of data collections and simple directions are provided as to how critically to assess and identify less‐than‐satisfactory values. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:694–700, 2009  相似文献   

15.
In the last decade, the characterization of complex molecules, particularly biomolecules, became a focus of fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) to obtain structural information for complex molecules. Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well-understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions, a single energetic collision is sufficient to dissociate the ion; however, this is not the case for complex molecules. For large ions, two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First, the center-of-mass collision energy-the absolute upper limit of energy transfer in a collision process-decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently, most practical MS/MS experiments with complex ions involve multiple-collision activation (MCA-CID), multi-photon activation, or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides, with an emphasis on experiments carried out with Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions. Combining collisional energy-resolved data with RRKM-based modeling revealed the effect of peptide size and identity on energy transfer in collisions-very important characteristics of ion activation from fundamental and the analytical perspectives. Finally, the combination of FT-ICR with SID was utilized to carry out the first time-resolved experiments that examine the kinetics of peptide fragmentation. This has lead to the discovery that the time-dependence of ion dissociation varies smoothly up to a certain collision energy, and then shifts dramatically to a time-independent, extensive dissociation. This near-instantaneous "shattering" of the ion generates a large number of relatively small fragment ions. Shattering of ions on surfaces opens up a variety of dissociation pathways that are not accessible with multiple-collision and multiphoton excitation.  相似文献   

16.
傅里叶变换-离子回旋共振质谱(FT-ICR MS)具有较高的分辨率和串联质谱分析能力。离子在分析池中做回旋运动时,镜像电流会因离子与中性分子发生碰撞而逐渐衰减。基于此,通过选择合适的理论模型,并结合相应的算法,可推算出离子的碰撞截面(CCS)。该方法无需增加仪器硬件成本,可通过直接分析高分辨质谱数据获取离子结构信息。近年来,随着FT-ICR MS仪器的发展和推广,该方法得到快速发展。本文综述了此类方法使用的碰撞模型、利用时域和频域信号进行数据分析的不同方法及特点,虽然提供的离子CCS数据的可靠性和准确度有待进一步提高,但在离子的动态CCS测量以及离子异构化的研究中表现出独特优势。该方法可进一步与离子淌度技术相结合,借助FT-ICR MS较高的质量分辨能力和离子操控能力,提供多维度的离子结构信息。  相似文献   

17.
谭聪睿  徐伟 《质谱学报》2022,43(6):754-767
蛋白质与其他分子的相互作用几乎在所有的生命活动中起着核心调控作用,这些相互作用力和形成的蛋白质复合物是现代生命科学的研究重点。由于传统的生物物理技术对蛋白质复合物和相互作用的研究存在样品纯度要求高的限制,因此迫切需要新技术的出现,为结构生物学和相互作用组学的研究提供补充。质谱技术可以从原理上对混合样品进行检测,降低对样品纯度的要求,其中非变性质谱展现出强大的连接与互补作用。本文从样品制备、离子源、质量分析器、质谱联用技术等4方面介绍非变性质谱相关技术及近年来的研究进展,并总结分析未来面临的挑战以及发展方向。  相似文献   

18.
李刚  陈强  赵建龙 《现代仪器》2006,12(2):31-34
离子迁移谱技术是一种气相环境下的电泳检测技术,具有快速、灵敏、运行成本低等特点。作为一种重要的痕量化学物质检测技术,现已广泛应用于化学毒剂探测和机场、海关的毒品与爆炸物检测。近年来,离子迁移谱技术与电喷雾和基质辅助解吸附等离子化技术的结合,以及与质谱技术的联用,使得该技术的应用迅速拓展到生物医学领域。本文介绍离子迁移谱技术的主要原理并综述离子迁移谱技术在蛋白质化学、临床化学和药物化学等方面的应用。  相似文献   

19.
The author provides a brief overview, and shares the extraordinary excitement, of the years of unprecedented discoveries in ion chemistry that followed the first production of fullerene powder in 1990. Various charge states of the buckminsterfullerene cation became available by conventional electron‐impact ionization of the vapor of this powder and so for mass‐spectrometric measurements of ion reactivity. The emphasis here will be on fullerene‐ion research performed in the author's own laboratory at York University using electron ionization flow‐tube mass spectrometry techniques. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:672–693, 2009  相似文献   

20.
Natural organic matter (NOM) is a complex mixture of biogenic molecules resulting from the deposition and transformation of plant and animal matter. It has long been recognized that NOM plays an important role in many geological, geochemical, and environmental processes. Of particular concern is the fate of NOM in response to a warming climate in environments that have historically sequestered carbon (e.g., peatlands and swamps) but may transition to net carbon emitters. In this review, we will highlight developments in the application of high-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) in identifying the individual components of complex NOM mixtures, focusing primarily on the fraction that is dissolved in natural waters (dissolved organic matter or DOM). We will first provide some historical perspective on developments in FTICR technology that made molecular-level characterizations of DOM possible. A variety of applications of the technique will then be described, followed by our view of the future of high-field FTICR MS in carbon cycling research, including a particularly exciting metabolomic approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号