首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
BACKGROUND: In order to effectively degrade bovine serum albumin (BSA) under ultrasonic irradiation, biological mineral material (tooth powder) was adopted to mix with nano‐sized TiO2 powder. A TiO2/tooth composite with high sonocatalytic activity and remarkable selectivity was prepared. RESULTS: TiO2/tooth composite with tooth content of 30% (w/w) heat‐treated at 500 °C for 40 min was used as sonocatalyst and the catalytic degradation of BSA under ultrasonic irradiation was examined. Some influencing factors, such as ultrasonic irradiation time, TiO2/tooth catalyst amount, solution acidity and NaCl concentration, were studied by UV‐vis and fluorescence spectroscopic analysis. Furthermore, the BSA attack site for the TiO2/tooth composite was identifies by synchronous fluorescence spectra. CONCLUSION: The results indicated that, under ultrasonic irradiation, the TiO2/tooth composite can promote the degradation of BSA more effectively than pure nano‐sized TiO2 powder. The attack site is identified as tyrosine (Tyr) residue. These results are of great significance for the use of a sonocatalytic method to treat tumours in clinical applications. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The transition crystal nanometer TiO2 sonocatalyst with high sonocatalytic activity was prepared utilizing the method of ultrasonic irradiation in hydrogen peroxide solution. The sonocatalytic activity of transition crystal nanometer TiO2 powder was validated through the degradation of acid red B and azo fuchsin solutions by ultrasonic irradiation, respectively. The results show that the sonocatalytic activity of the transition crystal nanometer TiO2 powder is obviously higher than ones of both original nanometer rutile and anatase TiO2 powders. The degradation ratios of acid red B and azo fuchsin in the presence of the transition crystal nanometer TiO2 catalyst surpass 96.5% and 85.3% within 40 min ultrasonic irradiation, respectively. At the same conditions, the degradation ratios are 62.5% and 45.0% in the presence of original nanometer anatase TiO2 powders, 73.5% and 59.5% in the presence of original nanometer rutile TiO2 powders, respectively, while the corresponding degradation ratios are only 29.8% and 14.2% in the absence of any TiO2 catalyst, respectively. The degradation processes of both acid red B and azo fuchsin solutions are the pseudo-first-order reaction.  相似文献   

3.
The partial transformation of crystal phase of micron-sized TiO2 powder from rutile to anatase was realized utilizing microwave irradiation in hydrogen peroxide solution. Afterwards, the ultrasound of low power was used as an irradiation source to induce the transition crystal TiO2 powder to perform the sonocatalytic activity through the degradation of azo fuchsine in aqueous solution. The results show that the sonocatalytic activity of the transition crystal TiO2 powder is obviously higher than that of pure micron-sized rutile and anatase TiO2 powders. The degradation ratio of azo fuchsine in the presence of the transition crystal TiO2 powder attains nearly 80% within 80 min ultrasonic irradiation.  相似文献   

4.
A phase transformation of micron‐sized TiO2 powder from anatase to rutile was attempted by heat‐treatment in order to generate a new mixed crystal TiO2 with high associated photocatalytic activity. Heat‐treated micron‐sized TiO2 powders at different transition stages were characterized by X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) methods. The tests of photocatalytic activity of the heat‐treated micron‐sized TiO2 powders were conducted by the photocatalytic degradation of Rhodamine B and Acid Red B under visible light irradiation. The results indicate that mixed crystal TiO2 photocatalyst heat‐treated at 400 °C for 60 min shows the highest photocatalytic activity. It can effectively decompose the Rhodamine B and Acid Red B in aqueous solution after 6 h visible light irradiation. A remarkable improvement in photocatalytic activity of TiO2 is caused by the formation of combined rutile–anatase phases and separation of photogenerated electron–hole pairs. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A carbon nanotube (CNT)/gold nanoparticle (NP) nanocomposite was synthesized by simultaneously reducing the Au ions and depositing Au NPs on the surface of a CNT. The functional groups were investigated with Fourier transform infrared spectra. From the Raman spectra, the D‐band and G‐band of the CNT were identified. The deposition of nanometer‐sized Au NPs on the CNT sites was observed by transmission electron microscopy. The photodegradation of methylene blue (MB) in aqueous solutions was studied using various photocatalysts, including TiO2, TiO2‐SiO2, CNT/TiO2, CNT/TiO2‐SiO2, Au/TiO2, CNT‐Au/TiO2, and CNT‐Au/TiO2‐SiO2 composites. CNT addition leads to a synergic effect, improving the photoactivity of the catalysts. A possible physically based mechanism was proposed involving the reduction of electron‐hole recombination and fast electron‐transfer possibility.  相似文献   

7.
Polymer electrolyte membranes based on poly(ethylene oxide) (PEO) doped with TiO2 nanoparticles were synthesized by simple solution cast technique. Mesoporous TiO2 film was prepared by doctor‐blade method. The modified polymer membranes and the mesoporous films were characterized by SEM, TEM, AFM, ionic conductivity, and J‐V measurements. Dye‐sensitized solar cells (DSSC) have been fabricated in which PEO‐polymer electrolyte doped with and without nano‐TiO2 were sandwiched between porous TiO2 and counter electrodes. The DSSC with nano‐TiO2 doped polymer electrolyte shows better performance (1.68%) in comparison with pristine polymer electrolyte (1.07%), which is due to improved ionic conductivity value in polymer electrolyte system by nano‐TiO2 doping. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
This paper addresses nano‐sized titanium dioxide (TiO2) reinforced natural rubber composites. Micro‐sized TiO2 is simultaneously prepared to make a comparison with the composites containing nano‐sized TiO2. To improve the dispersion of TiO2, this study also suggests a new method of incorporating TiO2. Aqueous dispersions of micro‐ and nano‐sized TiO2 at the loadings of 0, 2, 4, 6, and 8 parts by weight per hundred parts of resin were dispersed in natural rubber latex, and then the resulting compounds were dried prior to mixing it with other ingredients on a two‐roll mill. By applying this technique, the homogeneity of the compound is significantly improved. This can be clearly seen from the enhancement of tensile properties and morphological characteristics where the optimum loading was found at 6 parts by weight per hundred parts of resin of micro‐ and nano‐sized TiO2. Adding TiO2 results in delayed scorch times and curing times wherein the curing process of filled compounds is shorter than the unfilled compound. J. VINYL ADDIT. TECHNOL., 23:200–209, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
A novel Nano/submicrofiber catalyst was prepared via electrospinning technology from poly (vinyl pyrrolidone) (PVP) and nano‐TiO2. First, nano‐TiO2 particles were added into the mixture of ethanol and deionized water, the mass ratio of ethanol and deionized water was 1 : 1, the TiO2 suspension was obtained after 1 h with ultrasonic treatment and centrifugal effect, Then PVP was added into the above‐mentioned suspension and the content of PVP in the sol was 28%. The TiO2/PVP solution was electrospun with different voltage. The effects of the content of TiO2 and electrospinning voltage on diameter of nano/submicrofiber were studied. The nano/submicrofiber catalyst was characterized by scanning electron microscopy, transmission electron microcopy, X‐ray diffraction, and Fourier transform infrared. The results show that the diameter of nano/submicrofiber increases with an increase of the content of nano‐TiO2 and decreases with the increase of electrospinning voltage. The analytical result showed that the nano‐TiO2 particles were well dispersed in the matrix of PVP, moreover, the crystal type of nano‐TiO2 was a mixture of anatase and rutile and the diameter of nano‐TiO2 particles in the nano/submicrofiber is in the range of 20–60 nm and the nano‐TiO2 particle was monodisperse, and the nano‐TiO2 particle and PVP molecule was connected by a hydrogen bonding. This nano/submicrofiber catalyst has a high efficiency on degradation on CH2O. 56.8 percent of CH2O was degraded under ultraviolet radiation in 80 min when the content of nano‐TiO2 is 20% in nano/submicrofibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The influences of nano‐particles (nano‐sized CaCO3 and nano‐sized SiO2) on plasticizers volatility, solvent extraction stability, and exudation stability of flexible PVC were studied. The results showed that nano‐particles could reduce migration of plasticizers, thus improved the ability of anti‐migration of flexible PVC. Further more, nano‐sized SiO2 shows excellent property than nano‐sized CaCO3 in resistance migration of plasticizers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Polyaniline/nano‐SiO2 particle composites were prepared through ultrasonic irradiation. Polymerization of aniline was conducted under ultrasonic irradiation in the presence of two types of nano‐SiO2: porous nanosilica and spherical nanosilica. The stability of the colloid dispersion, UV–vis spectra, composition, interaction, conductivity, and other characteristics of the composites were examined. It was found that the aggregation of nano‐SiO2 could be reduced under ultrasonic irradiation and that nanoparticles were redispersed in the aqueous solution. The formed polyaniline deposited on the surface of the nanoparticle, which led to a core–shell structure. Two particle morphologies, threadlike aggregates with a few spherical nanoparticles for porous nanosilica and spherical particles with a few sandwichlike particles for spherical nanosilica, were observed. X‐ray photoelectron spectroscopy showed that for two types of composites the ratio of Si atoms to N atoms (Si:N) on the surface was much higher than that in the bulk. The UV–vis spectra of the diluted colloid dispersion of polyaniline/nano‐SiO2 composite particles were similar to those of the polyaniline system. Fourier transform infrared spectroscopy suggested strong interaction between polyaniline and nano‐SiO2. The conductivity of the polyaniline/porous nanosilica (23.1 wt % polyaniline) and polyaniline/spherical nanosilica (20.6 wt % polyaniline) composites was 2.9 and 0.2 S/cm, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1811–1817, 2003  相似文献   

12.
Nowadays, solvent‐free, one‐part cyanoacrylate adhesive is widely used in medicine and dentistry. According to a literature survey done by the authors, there are few papers concentrated on the role of nano‐sized particles on the thermal behavior of cyanoacrylate glue. Thus the main goal of the current research focused on clarifying the role of nano‐sized SiO2 on the thermal behavior of cyanoacrylate. Thermal behavior of all materials including cyanoacrylate and its nanocomposites was studied by using Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The results of DSC analysis showed that an increase in the amount of nano‐sized SiO2 results in decreases in the duration of cyanoacrylate curing, energy release during polymerization, and incubation time of polymerization. Furthermore, the results of TGA tests illustrated that the weight loss of cyanoacrylate strongly depends on the contents of both caffeine and SiO2. In fact, an increase in nano‐sized SiO2 content increases the degradation temperature of cyanoacrylate. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
A new chitosan molecular imprinted adsorbent obtained by immobilization of nano‐TiO2 on the adsorbent surface (surface‐imprinted adsorbent with nano‐TiO2) was prepared. Based on photocatalytic reaction and the surface molecular imprinting technology, this new kind of surface‐imprinted adsorbent with immobilization of nano‐TiO2 can not only adsorb template metal ions but can also degrade organic pollutants. The results showed that, after the nano‐TiO2 was immobilized on the adsorbent surface, the adsorption ability for the imprinted ion (Ni2+) of this new imprinted adsorbent immobilized with nano‐TiO2 was not affected, but the degradation ability for p‐nitrophenol (PNP) of the surface‐imprinted adsorbent with nano‐TiO2 increased three‐fold compared with that of the surface‐imprinted adsorbent without nano‐TiO2, from 23.8 to 76.1% (at an initial PNP concentration of 20 mg·dm?3). The optimal TiO2 concentration in the adsorbent preparation was 0.025 g·TiO2 g?1 adsorbent. The removal capacity for PNP reached 60.25 mg·g?1 (at 400 mg·dm?3 initial PNP concentration) under UV irradiation. The surface‐imprinted adsorbent with nano‐TiO2 can be reused for at least five cycles without decreasing the removal ability for PNP and the imprinted ion (Ni2+). Copyright © 2006 Society of Chemical Industry  相似文献   

14.
The nano‐ZnO and nano‐TiO2 were added into chitosan (CS) anion layer to prepare polyvinyl alcohol (PVA) ‐ sodium alginate (SA)/ TiO2‐ZnO‐CS (here, PVA:polyvinyl alcohol; SA:sodium alginate) bipolar membrane (BPM), which was characterized using scanning electron microscopy, atomic force microscopy (AFM), thermogravimetric analysis (TG), electric universal testing machine, contact angle measurer, and so on. Experimental results showed that nano‐TiO2‐ZnO exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano‐TiO2 or nano‐ZnO. The membrane impedance and voltage drop (IR drop) of the BPM were obviously decreased under the irradiation of high‐pressure mercury lamps. At a current density of 60 mA/cm2, the cell voltage of PVA‐SA/TiO2‐ZnO‐CS BPM‐equipped cell decreased by 1.0 V. And the cell voltages of PVA‐SA/TiO2‐CS BPM‐equipped cell and PVA‐SA/ZnO‐CS BPM‐equipped cell were only reduced by 0.7 and 0.6 V, respectively. Furthermore, the hydrophilicity, thermal stability, and mechanical properties of the modified BPM were increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The nano‐SiO2 particles modified by silane coupling agent A‐1100 were used for preparing the vinyl ester resin (VE) Pickering emulsion. The stable emulsion could be served as the film former of sizing agent for glass fiber (GF). The influence of the wettability and the addition amount of nano‐SiO2 on the stability of film former emulsion was explored. The effect of nano‐SiO2 Pickering emulsion type sizing agent on the properties of GF was investigated. SEM images show that there existed a layer of sizing agent film with nano‐SiO2 particles evenly on the GF surface. The abrasion resistance of the sized GF reached 3,579 times and the stiffness was 69 mm. The strand integrity also performed well. The fracture strength of GF bundles treated by Pickering emulsion type sizing agent increased by 28.6% to 0.504 N/Tex compared with that of the unsized GF bundles. The interlaminar shear strength (ILSS) of GF/VE composites sized by self‐made sizing agent which contained nano‐SiO2 has improved, compared to the unsized GF reinforced VE composite. POLYM. COMPOS., 37:334–341, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Nanosilica/polyarylene ether nitriles terminated with phthalonitrile (SiO2/PEN‐t‐Ph) composites were prepared by hot‐press approach. To ensure the nano‐SiO2 can disperse uniformly, the solution casting method combined with ultrasonic dispersion technology had been taken previously. The mass fraction of nano‐SiO2 particles was varied to investigate their effect on the thermal, mechanical, and dielectric properties of the nanocomposites. From scanning electron microscope images, it was found that the nanoSiO2 particles were dispersed uniformly in the PEN‐t‐Ph matrix when the addition of nano‐SiO2 was less than 16.0 wt%. However, when the mass fraction of nano‐SiO2 increased to 20.0 wt%, the nano‐SiO2 particles tend to self‐aggregate and form microns sized particles. Thermal studies revealed that nano‐SiO2 particles did not weaken the thermal stabilities of the PEN‐t‐Ph matrix. Mechanical investigation manifested that the SiO2/PEN‐t‐Ph nanocomposites with 12.0 wt% nano‐SiO2 loading showed the best mechanical performance with tensile strength of 108.2 MPa and tensile modulus of 2107.5 Mpa, increasing by 14% and 19%, respectively as compared with the pure PEN‐t‐Ph film. Dielectric measurement showed that the dielectric constant increased from 3.70 to 4.15 when the nano‐SiO2 particles varied from 0.0 to 20.0 wt% at 1 kHz. Therefore, such composite was a good candidate for high performance materials at elevated temperature environment. POLYM. COMPOS., 35:344–350, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
A styrene‐acrylic/SiO2 nanoparticle composite emulsion was prepared by using SiO2 nanoparticles as seeds. The effect of factors such as the level of nano‐SiO2, reaction temperature and ultrasound treatment of nano‐SiO2 on the stability of the polymerization reaction was investigated. Water‐resistance of the emulsion was measured. The level of nano‐SiO2 in the emulsion was determined by inductively coupled plasma (ICP) spectrometry. The particle morphology of the emulsion with nano‐SiO2 was observed with transmission electron microscopy (TEM). The kinetics of the polymerization was also studied at various temperatures and various levels of nano‐SiO2. They showed that the level of nano‐SiO2 and reaction temperature had a great influence on the monomer conversion, particle size, coagulum content and viscosity of the emulsion. Nano‐SiO2 treated by ultrasonics can increase the coagulum content greatly, but it does not improve the water resistance of the emulsion. The level of nano‐SiO2 in the emulsion was lower than the theoretical value. The reaction kinetics indicated that the level of nano‐SiO2 had less influence on the reaction rate than the reaction temperature. Even a small amount of nano‐SiO2 can decrease the reaction rate. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
A series of the surface‐functionalized nano‐SiO2/polybenzoxazine (PBOZ) composites was produced, and an attempt was made to improve the toughness of PBOZ material, without sacrificing other mechanical and thermal properties. A benzoxazine functional silane coupling agent was synthesized to modify the surface of nano‐SiO2 particles, which were then mixed with benzoxazine monomers to produce the nano‐SiO2‐PBOZ nanocomposites. The notched impact strength and the bending strength of the nano‐SiO2‐PBOZ nanocomposites increase 40% and 50%, respectively, only with the addition of 3 wt % nano‐SiO2. At the same load of nano‐SiO2, the nano‐SiO2‐PBOZ nanocomposites exhibit the highest storage modulus and glass‐transition temperature by dynamic viscoelastic analysis. Moreover, the thermal stability of the SiO2/PBOZ nanocomposites was enhanced, as explored by the thermogravimetric analysis. The 5% weight loss temperatures increased with the nano‐SiO2 content and were from 368°C (of the neat PBOZ) to 379°C or 405°C (of the neat PBOZ) to 426°C in air or nitrogen with additional 3 wt % nano‐SiO2. The weight residue of the same nanocomposite was as high as 50% in nitrogen at 800°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Porous TiO2 films decorated with Bi2O3 nanoparticles are fabricated via alkali‐hydrothermal of titanium (Ti) plate by varying the reaction time. The amorphous TiO2 is transformed into anatase after annealing the films at 500°C in air. The p‐type Bi2O3 nanoparticles are successfully assembled on the surface of porous n‐type TiO2 films through the ultrasonic‐assisted successive ionic layer adsorption and reaction (SILAR) technique to form Bi2O3/TiO2 nanostructure by the two cycles. The obtained Bi2O3/TiO2 films are consisted of a well‐ordered and uniform porous structure with an average pore diameter of about 100‐200 nm containing homogeneously dispersed Bi2O3 nanoparticles of ~5 nm diameter. Moreover, the resultant composites present excellent photocatalytic performance toward methyl blue (MB) degradation under UV and visible light irradiation, which could be mainly ascribed to the enhanced light adsorption capacity of unique composite structure and the formation of pn heterojunctions in the porous Bi2O3/TiO2 films. This research is helpful to design and construct the highly efficient heterogeneous semiconductor photocatalysts.  相似文献   

20.
High‐impact polystyrene (HIPS)/nano‐TiO2 nanocomposites were prepared by surface pretreatment of nano‐TiO2 with special structure dispersing agent (TAS) and master batch manufacturing technology. The results show that when the nano‐TiO2 content is 2%, the notched impact strength, tensile strength, and elastic modulus of HIPS/nano‐TiO2 nanocomposites increased to a maximum. This result indicates that nano‐TiO2 has both toughening and reinforcing effects on HIPS. The heat‐deflection temperature and flame‐retardance of HIPS/nano‐TiO2 nanocomposites are also obviously improved as the nano‐TiO2 content is increased. The nanocomposites manufactured by the two‐step method have better mechanical properties than that made by a one‐step method. HIPS/nano‐TiO2 nanocomposites are also non‐Newtonian and pseudoplastic fluids. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 381–385, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号