共查询到16条相似文献,搜索用时 101 毫秒
1.
利用热模拟试验、力学性能测试和组织分析等方法,研究了X100大变形管线钢在临界区加速冷却(50℃·s-1)条件下始冷温度对其显微组织与力学性能的影响。结果表明:通过临界区加速冷却,X100管线钢可获得贝氏体+铁素体(B+F)的双相组织;随着始冷温度的升高,试验钢中的贝氏体含量增多,铁素体含量降低,导致材料屈服强度上升,塑性下降;当始冷温度为840℃时,试验钢的强韧性较高,屈强比为0.69,均匀伸长率为15.5%,形变强化指数为0.14,可以满足大变形管线钢的使用要求;细小、多位向分布的贝氏体和较高位错密度的多边形铁素体是试验钢获得较高强韧性和优良大变形能力的原因。 相似文献
2.
X70管线钢焊接热影响区的连续冷却转变组织 总被引:1,自引:0,他引:1
利用热模拟技术并结合组织分析和硬度测试,测定出X70管线钢焊接热影响区连续冷却转变曲线并研究其组织转变规律.结果表明:当冷却速率大于15℃/s时,焊接热影响区组织由板条状贝氏体、粒状贝氏体和少量铁素体组成,细小的马氏体-奥氏体组元呈弥散分布;但随着冷却速率的减小,贝氏体比例逐渐减小,铁素体比例逐渐增大,晶粒明显长大,性能恶化.在实际焊接中将热输入控制在9.3~18.6 kJ/cm(壁厚14.6 mm)可获得强韧性良好的焊接热影响区组织. 相似文献
3.
采用Gleeble-3500型热模拟试验机在不同峰值温度下对X100管线钢进行单道焊热模拟试验,研究了X100管线钢热影响区粗晶区(峰值温度1 300℃)、细晶区(峰值温度950℃)、临界区(峰值温度850℃)和亚临界区(峰值温度650℃)的组织和冲击韧性。结果表明:粗晶区的奥氏体晶粒严重长大,晶界处存在块状马氏体-奥氏体(M-A)组元,与母材相比,其冲击吸收功下降了42.6%;细晶区的晶粒发生完全再结晶,晶粒尺寸均匀,晶粒中弥散分布着点状M-A组元,冲击吸收功损失不大;临界区的晶粒发生部分再结晶,晶粒大小不一,冲击吸收功下降了16.4%;亚临界区经历了一次短时高温回火,冲击韧性与母材相比变化不大。 相似文献
4.
5.
将X80管线钢加热到奥氏体化温度以上(920℃)并保温7min后,在不同冷却介质(质量分数10%NaCl溶液、自来水、机油、空气,冷却速率依次降低)中冷却,研究了其显微组织和力学性能。结果表明:随着冷却速率的降低,试验钢的强度和硬度降低,塑性增大,冲击功先增大后减小;在较高速率下冷却(NaCl溶液和自来水)后,组织中生成了贝氏体铁素体和少量马氏体板条,马氏体板条内有大量位错结构和少量碳化物,试验钢具有高的强度和低的变形能力;在较低速率下冷却(空气)后,组织中形成了多边形铁素体、贝氏体铁素体和少量块状马氏体-奥氏体组织,试验钢的强度和冲击韧性较低;在适中冷却速率下冷却(机油)后,组织中形成了贝氏体和铁素体的双相组织,多位向分布的细小贝氏体和邻近贝氏体的高密度位错铁素体使得试验钢具有良好的综合力学性能和较高的抗大变形能力。 相似文献
6.
论述了以TMCP工艺生产X70,研究了不同冷却速度对X70组织和性能的影响。结果显示,在较小冷速下,主要得到铁素体和珠光体组织;适当增大冷却速度,可得到针状铁素体为主的组织,试样的强度和韧性得到提高;冷速过大时,有M-A岛状组织生成。 相似文献
7.
8.
9.
10.
利用光学显微镜、拉伸试验机、冲击试验机及维氏硬度计等对X100管线钢埋弧焊焊接接头的组织及性能进行了研究。结果表明:X100管线钢焊接接头粗晶区组织为粗大的先共析铁素体和粒状贝氏体,细晶区主要为细小的铁素体,不完全重结晶区为细晶铁素体、粗晶针状铁素体和粒状贝氏体混合组织;接头的抗拉强度平均值为576MPa,达到母材的80%,拉伸试样断裂于焊缝处;接头焊缝、热影响区的冲击功分别为198J和259J;焊缝区最高硬度为316HV,在临界温度热影响区(ICHAZ)和亚临界温度热影响区(SCHAZ)之间存在软化现象。 相似文献
11.
12.
13.
表面机械研磨处理对X80管线钢焊接接头组织与性能的影响 总被引:3,自引:0,他引:3
采用表面机械研磨处理(SMAT)技术对X80管线钢焊接接头进行了30,60及90 min表面纳米化处理,分别采用光学显微镜、X射线衍射仪、表面粗糙度仪及显微硬度计等研究了SMAT不同时间后X80管线钢焊接接头的显微组织、晶粒尺寸、表面粗糙度及显微硬度的变化。结果表明:SMAT不同时间后均可在X80管线钢焊接接头表面获得一定厚度的塑性变形层,且随着SMAT时间的延长,塑性变形层厚度逐渐增加,实现了焊接接头的表面纳米化(组织均匀化);SMAT可以显著提高焊接接头表面的显微硬度,使显微硬度沿深度呈梯度分布;SMAT还可改善焊接接头表面粗糙度,随SMAT时间的延长表面粗糙度逐渐减小。 相似文献
14.
采用热模拟技术研究了X80管线钢在不同焊接热循环条件下晶粒及第二相粒子的变化。结果表明:焊接粗晶区奥氏体晶粒尺寸分布均匀,平均为30~40μm,且当第二相粒子尺寸小、数量多时由于其对原始奥氏体晶界钉扎力大,所得晶粒尺寸较小。并以试验数据为基础,通过引入晶粒长大阈值,考虑了第二相粒子对奥氏体晶界钉扎作用的影响,建立了X80管线钢焊接粗晶区奥氏体晶粒长大的动力学方程。 相似文献
15.
X100在海洋石油领域具有广泛应用前景,服役过程中不可避免受到氢的影响。以API X100管线钢为研究对象,通过电化学试验和声发射监测等试验方法,研究不同电化学充氢时间对管线钢力学性能和断裂韧度的影响;结合微观形貌,探究充氢时间与X100管线钢作用机理。结果表明:管线钢本身具有良好的强韧性,电化学引入氢后,材料的屈服强度和抗拉都会降低,且随着充氢时间的增加,性能恶化加剧。充氢后,材料性能的恶化,主要归因于引入的氢会扩散到材料的应力集中缺陷处,与缺陷处组织发生交互,最终导致材料性能变化。研究结果可为高强钢服役时的性能劣化预测及开裂监控提供依据。 相似文献