首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以氮气作为气相流体,分别采用纯水和乙醇为液相流体,对水平矩形小通道(dh=1.2 mm)内的两相流压力降开展实验研究,同时采集了两相流压降数据,采用高速摄影仪对两相流流型进行了拍摄.根据流型解释了表面张力对摩擦压降的影响,并将均相流模型和分相流模型的预测结果与实验值进行了对比.得出如下结论:在较低折算流速下,均相流模型...  相似文献   

2.
吴昱  刘博 《化学工程》2014,42(10):50-53,63
以氮气为气相介质,以不同表面张力的液体(纯水、质量分数0.01%SDS溶液、乙醇)为液相介质,对矩形微通道(500μm×500μm)内气液二相流压力降进行可视化实验研究。实验数据表明:二相流流型对压力降的影响占主导地位,二相流压力降随着液体表面张力的增加而减小。二相摩擦压力梯度的测量数据与分相模型,匀相流模型理论预测值进行对比,平均偏差分别为34.3%和19.6%,预测效果不佳。通过对Chisholm关系式进行修正,得出新的预测模型,平均偏差为13.7%。结果表明:修正后的压降模型能较好地预测弹状流,弹状环状流和环状流实验结果。  相似文献   

3.
王海琴  何利民  李志彪 《化工学报》2006,57(9):2086-2090
利用非线性分析技术中的分形理论,在长24.73 m、内径0.05 m的小型气液两相流实验装置上对下倾管空气-水段塞流中的液塞频率波动特性进行了研究.结果表明,液塞频率的波动是对初始条件敏感的混沌振荡,遵循分形统计规律,具有持久性.折算液速小时,液塞频率波动的长程相关性随着混合速度的增大而减弱,液塞频率波动对初始条件的敏感程度增强,折算液速较大时则相反.管线倾角越大,液塞频率对初始条件的敏感程度受混合速度的影响越小.折算液速和混合速度均较大时,液塞频率的混沌程度受管线倾角的影响较小.  相似文献   

4.
杨宽  阎昌琪  曹夏昕 《化工学报》2020,71(7):3060-3070
采用去离子水作为实验工质,在低压低流速自然循环工况下开展了单面加热可视化窄矩形通道内的过冷沸腾摩擦阻力特性实验研究。实验中测量了实验段内的压降数据,并通过高速摄影仪拍摄了窄矩形通道内的气液两相图像,提出了过冷沸腾条件下的两相摩擦压降的剥离计算方法。基于本实验中获得摩擦压降数据,对分别基于均相流模型和分液相模型的经典两相摩擦压降计算关系式进行了评估,实验结果表明:采用不同等效黏度计算方法的均相流模型计算结果比实验值明显偏小;而分相流模型中,Sun and Mishiba关系式和Tran关系式均能够较好地预测摩擦阻力,计算值与实验值的平均相对偏差在±15%以内。结合实验数据,以分相流模型方法为基础,考虑全液相Reynolds数、Martinelli参数和Laplace数的影响,获得了计算分液相折算系数的经验关系式,与实验数据符合较好,平均相对误差在10%范围内。  相似文献   

5.
采用高速摄像仪对400μm×400μm T型微通道内N-甲基二乙醇胺(MDEA)与单乙醇胺(MEA)混合醇胺水溶液(含0.2%SDS)吸收CO_2过程的气液两相流压力降进行了实验研究。观测到了泡状流、泡状-弹状流、弹状流、弹状-环状流流型。考察了弹状流型下气液两相流流量、醇胺溶液浓度、气液雷诺数与增强因子对压力降的影响。结果表明:压力降随着气液两相流量、气液雷诺数及增强因子的增大而增大。当Q_G﹥80 mL/h时,压力降随醇胺浓度的增大而减小。以分相流模型为基础,提出了微通道内伴有化学吸收的气液两相流压力降预测模型,平均偏差为8.46%,模型计算值与实验值吻合良好。  相似文献   

6.
曲面弓形折流板换热器壳程流体流动与传热   总被引:2,自引:1,他引:1       下载免费PDF全文
钱才富  高宏宇  孙海阳 《化工学报》2011,62(5):1233-1238
提出一种新型折流板--曲面弓形折流板,并构造曲面弓形折流板换热器,采用数值模拟和实验相结合的方法研究其壳程传热和流动阻力性能。在实验方面,设计了实验用曲面弓形折流板和普通弓形折流板换热器试样,其中换热器管束采用可拆连接形式,以考察不同折流板结构和板间距的影响。通过改变管程及壳程流量和管程流体进口温度,获得了大量对应于不同折流板结构的壳程压力降和传热系数实验数据。在模拟方面,利用Fluent软件建立了曲面弓形折流板换热器和普通弓形折流板换热器流体数值分析模型,得到了壳程流体流场分布及壳程压力降和传热系数。结果发现,在相同结构参数和流动条件下,曲面弓形折流板换热器壳程压力降比普通弓形折流板换热器降低9%~24%,而壳程传热系数比普通弓形折流板换热器提高3%~11%。  相似文献   

7.
在较宽的操作条件范围内系统测试了下行床床层压力降,获得气固两相流与管内壁间的摩擦压降,提出了下行气固两相流与管壁间摩擦压降的计算模型。结果表明,在下行床的充分发展段,气固两相流与管壁间的摩擦导致表观颗粒浓度显著小于真实颗粒浓度;当表观气速大于8 m·s-1时,气固两相流与管壁间的摩擦压降接近甚至超过气固两相流重力产生的静压降。在采用压差法测试下行床中的平均颗粒浓度时,如忽略气固两相流与管壁间的摩擦,则可能导致显著的偏差。下行气固两相流与管内壁间的摩擦压降主要来自于颗粒与管壁间的摩擦。颗粒直径对气固两相流与管壁间摩擦压降的影响随着操作气速的提高逐渐减弱。采用提出的摩擦压降模型对表观颗粒浓度进行修正后,预测值与实验值吻合较好。  相似文献   

8.
本文采用以弹状气泡速度运动的相对坐标系,对液体段建立动量衡算关系,分析了弹状流压力降中加速压降的来源。与前人结果比较,理论根据较为充分,与实验数据也更为吻合。  相似文献   

9.
对流态化合成氮化硅的鼓泡床进行了冷态试验研究,结果表明:优选出的流态化分布板,在表观气速为0 11~0 13m/s时,可以形成稳定的鼓泡床。并运用CFD技术,模拟研究了床内的空气相、颗粒相的组分浓度分布规律,对床内的死流区、不同粒径颗粒的上下分层现象与不同床层高度的压力降的模拟预测结果与实验结果相吻合。  相似文献   

10.
应用电导探针测量技术,对矩形截面螺旋通道内气液两相流局部含气率进行实验研究。在不同的气相折算速度下,应用电导探针测量了弹状流弹单元的长度,并与可视化方法进行对比,验证了电导探针的可靠性,并为信号处理选择合适的阈值。分别在泡状流、弹状流及环状流三种流型的条件下,分析了气相与液相折算速度对局部含气率分布的影响。实验结果发现,螺旋通道气液两相局部含气率呈非对称的抛物线形分布,这种非对称性受流型和液相折算速度的影响。  相似文献   

11.
立式螺旋管气液两相流摩擦阻力特性研究   总被引:2,自引:1,他引:1  
李广军  郭烈锦 《化学工程》1998,26(4):30-31,41
分别以油 气、气 水为工质,对立式螺旋管内气液两相流的摩擦阻力特性进行实验研究。实验用螺旋管完全由内径为39mm的有机玻璃管弯制而成,其螺旋直径265mm,全长4490mm。在对实验结果和前人有关研究进行分析的基础上,给出了两种流动条件下摩擦阻力的计算公式,并与实验结果进行了比较,两种流动条件下,预测值与实验数据的最大偏差分别在30%和20%之内。  相似文献   

12.
姚敏  吴跃  雍晓静  罗春桃  郭晓镭 《化学工程》2012,40(4):53-56,61
采用Barth气力输送理论,通过实验在质量流率1 550—1 700 kg/h的输送范围内,研究了宁东灵武矿区煤粉密相输送的压降和表观气速的关系。结果表明:随着表观气速的增加,水平管道和竖直管道的压降都是先降低后升高,但竖直段的压降变化速度比水平段变化快,水平段的经济气速(4 m/s)小于竖直段的经济气速(7 m/s)。通过计算值与实验值比较,发现理论计算值与实验值偏差在30%以内,说明基于Barth附加压降法对宁东灵武矿区煤粉密相气力输送管阻力特性的计算具有较好的适应性。  相似文献   

13.
研究了水平管内不同液相介质(水、油和不同浓度的CMC溶液)对气液两相间歇流动压降的影响. 实验管道为内径50 mm的透明有机玻璃管,从入口到分离器长约30 m,实验段由2个长3 m的水平管组成. 共记录了320组不同表观流速下的压降信号:油相0.17~1.85 m/s,水相0.17~2.48 m/s,CMC溶液0.17~1.42 m/s,气相0.06~3.40 m/s. 结果表明,液相为牛顿流体(油或水)的气液流动,随着表观气相流速的增大,压降呈增加趋势;非牛顿幂率流体(不同浓度的CMC溶液)的管道流动,当流动指数低于一定值时,压降随气相流量的增加呈降低趋势,并且低于单液相流动的压降. Lockhart-Martinelli模型过高地预测了气-非牛顿幂率流体两相的压降.  相似文献   

14.
水平直圆管内油气两相流的压降   总被引:6,自引:0,他引:6  
对水平放置的内径为40 mm的有机玻璃管内的油气两相流进行了详细的实验研究,实验工质为46机械油和空气.油相和气相折算速度分别为0.051~0.612 m•s-1和0.024~50.64 m•s-1,实验在室温下进行.采用Lockhart-Martinelli关联方法对各典型流型下的实验数据进行了整理,结合流动的具体情况对其中的关联参数C进行了重新定义,提出了基于典型流型的压力梯度计算模型,并对水平管内油气两相流的压降变化规律进行了分析和讨论.理论计算值与实验测量值吻合良好.  相似文献   

15.
在一套组合约束型提升管冷态实验装置上,通过实验研究了不同操作条件下提升管出口气固分布器的压降,并与常规气体分布器压降进行了对比。实验结果表明,在零床层及有床层的操作模式下,气固分布器压降均随提升管内表观气速和颗粒循环强度的增加而增大,在颗粒循环强度较低时,气固分布器压降曲线变化的斜率随着表观气速的增加而增大,在颗粒循环强度较高时,气固分布器压降曲线变化的斜率随着表观气速的增加而减小;随着开孔率及上部流化床层压降增加,气固分布器压降呈降低趋势,当流化床层压降达到一定程度后,分布器各孔方可实现有效布气,此后气固分布器压降趋于近似不变;在相同表观气速及开孔率下,气固分布器压降大于常规气体分布器压降。  相似文献   

16.
错流移动床的压降特性   总被引:1,自引:0,他引:1  
在矩形移动床内考察了颗粒下移速度、颗粒堆积状态及空腔生成和长大发展过程等因素对压降的影响. 在错流气体速度为0.09~1.35 m/s、颗粒下移速度为0.95~9.68 cm/min的较大变化范围内进行了实验研究. 结果表明,颗粒下移速度对压降几乎没有影响;当错流气速足够大时移动床内将出现"空腔"和"贴壁"等现象,空腔的发展过程造成压降随时间出现稳定、微波脉动和大幅波动3种变化;欧根公式适用于低错流气速时的移动床压降;高错流气速下空腔出现了"生成-长大-塌落-流化"的循环变化过程. 在实验基础上建立了有空腔时的移动床压降模型,并对空腔尺寸进行了无因次关联,其床层压降的计算结果与实验值相符.  相似文献   

17.
基于自主设计加工并搭建的水环输送稠油减阻模拟管路系统,采用500#白油模拟稠油,试验研究了稠油在水环作用下的水平管流阻力特性,分析了油相表观流速(0.3~1.0m/s)、水相表观流速(0.11~0.72m/s)及入口含水率(0.13~0.49)对水润滑管流流型特征及减阻效果的影响。结果表明:环状水膜可有效隔离并润滑油壁界面,油-水两相流流型总体上呈稳定的偏心环状流结构;水环输送可大幅降低管道输送过程中的压降,其压降值仅为相同油流量下纯油输送压降的1/55~1/27;当入口含水率为0.13~0.27时,水环输送的效能显著,输油效率均高于40;油相表观流速和入口含水率的增加会增大单位管长压降,降低水环输送的减阻效果和输油效能。  相似文献   

18.
大流量下倾斜管气液两相流实验研究   总被引:1,自引:0,他引:1  
在较高的气液范围内,以水和空气为实验介质,在多相流实验平台上进行了倾斜向上的高产量气液两相流模拟实验研究。实验采用内径为40 mm、长8 m的透明有机玻璃管,并利用高速摄像仪记录实验过程中的流型。对实验流型进行分析,发现了倾斜管中低气流速下的一种新的流型-振荡冲击流,并研究了表观气、液流速和倾斜角对气液两相流动中压降的影响,建立气/液膜流动模型来分析表观气、液流速对压降梯度的影响作用,实验研究结果表明:在高气液量范围内,倾斜管中观察到的气液两相流型主要为振荡冲击流、过渡流和环状流,并且倾角对流型转变边界的影响不显著;振荡冲击流压降随气流速的增加而降低,环状流压降随气流速的增加而增加,过渡流压降梯度最小;倾斜管压降梯度随着倾斜角度的增加而增大。  相似文献   

19.
在实验基础上,采用欧拉双流体模型对矩形错流移动床中稠密气固两相流动进行了模拟,分析了矩形错流移动床的空腔、贴壁、两相速度、气相停留时间、压降等. 结果表明,气固两相流动受端部效应影响. 随表观气速增大,贴壁(约0.19 m/s)和空腔(约0.31 m/s)现象出现. 空腔随时间发生变化,而贴壁为渐进型,气速与空腔和贴壁的形状有关. 气速分布、空腔和贴壁使压降沿轴向呈反C形分布. 进料影响区、主体流动区和下料影响区压降比约为6:10:9. 随表观气速增大,气相停留时间减小,空腔尺寸增大,贴壁厚度先增大后不变,压降增大;而颗粒循环强度的影响不大  相似文献   

20.
P. Woehl  R. L. Cerro   《Catalysis Today》2001,69(1-4):171-174
A theoretical model for the computation of pressure drop in bubble-train flow inside capillaries of square cross-section was developed. The model is based on three contributions: hydrostatics, viscous pressure drop, and capillary pressure drop. Capillary pressure drop is related to the shape of the fronts and ends of the bubbles. The model does not include entrance or exit effects, has no adjustable parameters, and agrees very well with available experimental data.

For a given set of flow parameters, bubble velocity and liquid slug average velocity are computed as a function of gas and liquid superficial velocities. The length of the unit cell determines the number of bubbles inside the capillary for a given flow situation. The model requires experimental information of average bubble lengths to compute the length of a unit cell consisting of a bubble and a liquid slug.

The three pressure contributions for a unit capillary length are linear functions of the number of bubbles inside the capillary. The length of the bubbles in bubble-train flows is a critical parameter in the computation of pressure drop.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号