首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMCA (methyl N-[4-(9-acridinylamino)-2-methoxyphenyl]carbamate hydrochloride), an amsacrine analogue containing a methylcarbamate rather than a methylsulphonamide side chain, contrasts with amsacrine, doxorubicin and etoposide in its relatively high cytotoxicity against non-cycling tumour cells. AMCA bound DNA more tightly than amsacrine, but the DNA base selectivity of binding, as measured by ethidium displacement from poly[dA-dT].[dA-dT] and poly[dG-dC].[dG-dC], was unchanged. AMCA-induced topoisomerase cleavage sites on pBR322, C-MYC and SV40 DNA were investigated using agarose or sequencing gels. DNA fragments were end-labelled, incubated with purified topoisomerase II from different mammalian sources and analysed after treatment with sodium dodecylsulphate/proteinase K. AMCA stimulated the cleavage activity of topoisomerase II, but the DNA sequence selectivity of cleavage was different from that of amsacrine and other topoisomerase inhibitors. It was similar to that of the methoxy derivative of AMCA, indicating that the changed specificity resulted from the carbamate group rather than from the methoxy group. The pattern of DNA cleavage induced by AMCA was similar for topoisomerase II alpha and II beta.  相似文献   

2.
Structural maintenance of chromosomes (SMC) proteins interact with DNA in chromosome condensation, sister chromatid cohesion, DNA recombination, and gene dosage compensation. How individual SMC proteins and their functional domains bind DNA has not been described. We demonstrate the ability of the C-terminal domains of Saccharomyces cerevisiae SMC1 and SMC2 proteins, representing two major subfamilies with different functions, to bind DNA in an ATP-independent manner. Three levels of DNA binding specificity were observed: 1) a >100-fold preference for double-stranded versus single-stranded DNA; 2) a high affinity for DNA fragments able to form secondary structures and for synthetic cruciform DNA molecules; and 3) a strong preference for AT-rich DNA fragments of particular types. These include fragments from the scaffold-associated regions, and an alternating poly(dA-dT)-poly(dT-dA) synthetic polymer, as opposed to a variety of other polymers. Reannealing of complementary DNA strands is also promoted primarily by the C-terminal domains. Consistent with their in vitro DNA binding activity, we show that overexpression of the SMC C termini increases plasmid loss without altering viability or cell cycle progression.  相似文献   

3.
A new electron-deficient tentacle porphyrin meso-tetrakis[2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethylamine )phenyl]porphyrin (TthetaF4TAP) has been synthesized. The binding interactions of TthetaF4TAP with DNA polymers were studied for comparison to those of an electron-deficient tentacle porphyrin and an electron-rich tentacle porphyrin; these previously studied porphyrins bind to DNA primarily by intercalative and outside-binding modes, respectively. The three tentacle porphyrins have similar size and shape. The basicity of TthetaF4TAP indicated that it has electronic characteristics similar to those of the intercalating electron-deficient tentacle porphyrin. However, TthetaF4TAP binds to calf thymus DNA, [poly(dA-dT)]2, and [poly(dG-dC)]2 in a self-stacking, outside-binding manner under all conditions. Evidence for this binding mode included a significant hypochromicity of the Soret band, a conservative induced CD spectrum, and the absence of an increase in DNA solution viscosity. As found previously for the electron-rich porphyrin, the results suggest that combinations of closely related self-stacked forms coexist. The mix of forms depended on the DNA and the solution conditions. There are probably differences in the detailed features of the self-stacking adducts for the two types of tentacle porphyrins, especially at high R (ratio of porphyrin to DNA). At low R values, the induced CD signal of TthetaF4TAP/CT DNA resembled that of TthetaF4TAP/[poly(dA-dT)]2, suggesting that TthetaF4TAP binds preferentially at AT regions. Competitive binding experiments gave evidence that TthetaF4TAP binds preferentially to [poly(dA-dT)]2 over [poly (dG-dC)]2. Thus, despite the long, positively charged, flexible substituents on the porphyrin, the binding of TthetaF4TAP is significantly affected by base-pair composition. Similar characteristics were found previously for the electron-rich tentacle porphyrin. Thus, significant changes in electron richness have relatively minor effects on this outside binding selectivity for AT regions. TthetaF4TAP is the first porphyrin with electron deficiency and shape similar to intercalating porphyrins that does not appear to intercalate. All porphyrins reported to intercalate have had pyridinium substituents. Thus, the electronic distribution in the porphyrin ring, not just the overall electron richness, may play a role in facilitating intercalation.  相似文献   

4.
Spectroscopic, calorimetric, DNA cleavage, electrophoretic, and computer modeling techniques have been employed to characterize the DNA binding and topoisomerase poisoning properties of three protoberberine analogs, 8-desmethylcoralyne (DMC), 5,6-dihydro-8-desmethylcoralyne (DHDMC), and palmatine, which differ in the chemical structures of their B- and/or D-rings. DNA topoisomerase-mediated cleavage assays revealed that these compounds were unable to poison mammalian type II topoisomerase. By contrast, the three protoberberine analogs poisoned human topoisomerase I according to the following hierarchy: DHDMC > DMC > palmatine. DNA binding by all three protoberberine analogs induced negative flow linear dichroism signals as well as unwinding of the host duplex. These two observations are consistent with an intercalative mode of protoberberine binding to duplex DNA. However, a comparison of the DNA binding properties for DMC and DHDMC, which differ only by the state of saturation at the 5,6 positions of the B-ring, revealed that the protoberberine analogs do not "behave" like classic DNA intercalators. Specifically, saturation of the 5-6 double bond in the B-ring of DMC, thereby converting it to the DHDMC molecule, was associated with enhanced DNA unwinding as well as a reversal of DNA binding preference from a DNA duplex with an inaccessible or occluded minor groove {poly[d(G-C)]2} to DNA duplexes with accessible or unobstructed minor grooves {poly[d(A-T)]2 and poly[d(I-C)]2}. In addition, a comparison of the DNA binding properties for DHDMC and palmatine revealed that transferring the 11-methoxy moiety on the D-ring of DHDMC to the 9 position, thereby converting it to palmatine, was associated with a reduction in binding affinity for both duplexes with unobstructed minor grooves as well as for duplexes with occluded minor grooves. These DNA binding properties are consistent with a "mixed-mode" DNA binding model for protoberberines in which a portion of the ligand molecule intercalates into the double helix, while the nonintercalated portion of the ligand molecule protrudes into the minor groove of the host duplex, where it is thereby available for interactions with atoms lining the floor and/or walls of the minor groove. Furthermore, saturation at the 5,6 positions of the B-ring, which causes the A-ring to be tilted relative to the plane formed by rings C and D, appears to stabilize the interaction between the host duplex and the minor groove-directed portion of the protoberberine ligand. Computer modeling studies on the DHDMC-poly[d(A-T)]2 complex suggest that this interaction may involve van der Waals contacts between the ligand A-ring and backbone sugar atoms lining the minor groove of the host duplex. The hierarchy of topoisomerase I poisoning noted above suggests that this minor groove-directed interaction may play an important role in topoisomerase I poisoning by protoberberine analogs. In the aggregate, our results presented here, coupled with the recent demonstration of topoisomerase I poisoning by minor groove-binding terbenzimidazoles [Sun, Q., Gatto, B., Yu, C., Liu, A. , Liu, L. F., & LaVoie, E. J. (1995) J. Med. Chem. 38, 3638-3644], suggest that minor groove-directed ligand-DNA interactions may be of general importance in the poisoning of topoisomerase I.  相似文献   

5.
Poly(dA-dT) center dot poly(dA-dT) which adopts the Z-form at 5 M NaCl in presence of 95 mM Ni2+ions is reversed to the B-conformation by the nonintercalating drugs netropsin (Nt) and distamycin A (Dst). The drug-induced reversal from the Z-to B-form of poly(dA-dT) center dot poly(dA-dT) is evidenced by CD spectral changes at characteristic wavelengths around 295 nm and 248 nm. The drug-induced conformational transition is accompanied by a slow kinetic process. The results suggest the preference of these AT-specific drugs for the B-form and the inability of Nt and Dst to form a stable complex with the Z-form of poly(dA-dT) center dot poly(dA-dT).  相似文献   

6.
Bacterial and archeal type I topoisomerases, including topoisomerase I, topoisomerase III and reverse gyrase, have different potential roles in the control of DNA topology including regulation of supercoiling and maintenance of genetic stability. Analysis of their coding sequences in different organisms shows that they belong to the type IA family of DNA topoisomerases, but there is variability in organization of various enzymatic domains necessary for topoisomerase activity. The torus-like structure of the conserved transesterification domain with the active site tyrosine for DNA cleavage/rejoining suggests steps of enzyme conformational change driven by DNA substrate and Mg(II) cofactor binding, that are required for catalysis of change in DNA linking number.  相似文献   

7.
The DNA binding properties of a series of imidazole-containing and C-terminus-modified analogues 4-7 of distamycin are described. These analogues contain one to four imidazole units, respectively. Data from the ethidium displacement assay showed that these compounds bind in the minor groove of DNA, with the relative order of binding constants of 6 (Im3) > 7 (Im4) > 5 (Im2) > 4 (Im1). The reduced binding constants of these compounds for poly(dA-dT) relative to distamycin, while they still interact strongly with poly(dG-dC), provided evidence of GC sequence acceptance. The preferences for GC-rich sequences by these compounds were established from a combination of circular dichroism (CD) titration, proton nuclear magnetic resonance (1H-NMR), and methidiumpropylethylenediaminetetraacetate-iron(II) [MPE.Fe-(II)] footprinting studies. In the CD studies, these compounds produced significantly larger DNA-induced ligand bands with poly(dG-dC) than poly(dA-dT) at comparable ligand concentrations. 1H-NMR studies of the binding of 5 to d-[CATGGCCATG]2 provided further evidence of the recognition of GC sequences by these compounds, and suggested that the ligand was located on the underlined sequence in the minor groove with the C-terminus oriented over the T residue. MPE footprinting studies on a GC-rich BamHI/SalI fragment of pBR322 provided unambiguous evidence for the GC sequence selectivity for some of these compounds. Compounds 4 and 7 produced poor footprints on the gels; however, analogues 5 and 6 gave strong footprints.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes   总被引:2,自引:0,他引:2  
Coralyne is a DNA-binding antitumor antibiotic whose structure contains four fused aromatic rings. The interaction of coralyne with the DNA triplexes poly(dT).poly(dA).poly(dT) and poly[d(TC)].poly[d(GA)].poly[d(C+T)] was investigated by using three techniques. First, Tm values were measured by thermal denaturation analysis. Upon binding coralyne, both triplexes showed Tm values that were increased more than those of the corresponding duplexes. A related drug, berberinium, in which one of the aromatic rings is partially saturated, gave much smaller changes in Tm. Second, the fluorescence of coralyne is quenched in the presence of DNA, allowing the measurement of binding parameters by Scatchard analysis. The binding isotherms were biphasic, which was interpreted in terms of strong intercalative binding and much weaker stacking interactions. In the presence of 2 mM Mg2+, the binding constants to poly(dT).poly-(dA).poly(dT) and poly[d(TC)].poly[d(GA)].poly[(C+T)] were 3.5 x 10(6) M-1 and 1.5 x 10(6) M-1, respectively, while the affinity to the parent duplexes was at least 2 orders of magnitude lower. In the absence of 2 mM Mg2+, the binding constants to poly[d(TC)].poly[d(GA)].poly[d(C+T)] and poly-[d(TC)].poly[d(GA)] were 40 x 10(6) M-1 and 15 x 10(6) M-1, respectively. Thus coralyne shows considerable preference for the triplex structure but little sequence specificity, unlike ethidium, which will only bind to poly(dT).poly(dA).poly(dT). Further evidence for intercalation of coralyne was provided by an increase in the relative fluorescence quantum yield at 260 nm upon binding of coralyne to triplexes as well as an absence of quenching of fluorescence in the presence of Fe[(CN)6]4-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Genetic studies revealed that DNA gyrase seems to catalyze immediate and transient DNA relaxation after Escherichia coli cells are exposed to heat shock (Ogata, Y., Mizushima, T., Kataoka, K., Miki, T., and Sekimizu, K. (1994) Mol. Gen. Genet. 244, 451-455). We have now obtained biochemical evidence to support this hypothesis. DNA gyrase catalyzed an increase in the linking number of DNA and relaxation of negatively supercoiled DNA, under physiological concentrations of ATP. Analyses by gel filtration chromatography of each subunit revealed that DNA relaxation activity co-migrated with each subunit. The linking number of DNA increased as the temperature increased. Further, the reaction was inhibited by nalidixic acid or by oxolinic acid. Based on these results, we propose that DNA gyrase participates in a concerted reaction with DNA topoisomerases in the immediate relaxation of DNA in cells exposed to heat shock.  相似文献   

10.
DNA gyrase is the target of the coumarin group of antibacterial agents. The drugs are known to inhibit the ATPase activity of gyrase and bind to the 24-kDa N-terminal subdomain of gyrase B protein. Supercoiling assays with intact DNA gyrase and ATPase assays with a 43-kDa N-terminal fragment of the B protein suggest that the drugs bind tightly, with Kd values <10(-7) M. In addition, the ATPase data suggest that 1 coumermycin molecule interacts with 2 molecules of the 43-kDa protein while the other coumarins form a 1:1 complex. This result is confirmed by cross-linking experiments. Rapid gel-filtration experiments show that the binding of ADPNP(5'-adneylyl beta,gamm-imidodiphosphate) and coumarins to the 43-kDa protein is mutally exclusive, consistent with a competitive mode of action for the drugs. Rapid gel-filtration binding experiments using both the 24-and 43-kDa proteins also show that the drugs bind with association rate constants of >10(5) M-1.s-1, and dissociation rate constants of approximately 3x10(-3)s-1 and approximately 4x10(-3)s-1 for the 43-and 24-kDa proteins, respectively. Titration calorimetry shows that the Kd values for coumarins binding to both proteins are approximately 10-8M and that binding is enthalpy driven.  相似文献   

11.
DNA topoisomerases are enzymes regulating the conformational state of DNA in every aspect of genetic processes by catalyzing transient cleavage and religation of DNA strands. The enzymes are targets of some of the important anticancer drugs. Many candidates of anticancer drugs are being screened via inhibition of the enzymes. In the present review, I discuss the role of DNA topoisomerases in genetic processes in mammalian cells, characteristics and mode of action of topoisomerase inhibitors, and resistance of tumor cells to the anticancer drugs.  相似文献   

12.
To target selectively the major groove of double-stranded B DNA, we have designed and synthesized a bis(arginyl) conjugate of a tricationic porphyrin (BAP). Its binding energies with a series of double-stranded dodecanucleotides, having in common a central d(CpG)2 intercalation site were compared. The theoretical results indicated a significant energy preference favoring major groove over minor groove binding and a preferential binding to a sequence encompassing the palindrome GGCGCC encountered in the Primary Binding Site of the HIV-1 retrovirus. Spectroscopic studies were carried out on the complexes of BAP with poly(dG-dC) and poly(dA-dT) and a series of oligonucleotide duplexes having either a GGCGCC, CCCGGG, or TACGTA sequence. The results of UV-visible and circular dichroism spectroscopies indicated that intercalation of the porphyrin takes place in poly(dG-dC) and all the oligonucleotides. Thermal denaturation studies showed that BAP increased significantly the melting temperature of the oligonucleotides having the GGCGCC sequence, whereas it produced only a negligible stabilization of sequences having CCCGGG or TACGTA in place of GGCGCC. This indicates a preferential binding of BAP to GGCGCC, fully consistent with the theoretical predictions. IR spectroscopy on d(GGCGCC)2 indicated that the guanine absorption bands, C6=O6 and N7-C8-H, were shifted by the binding of BAP, indicative of the interactions of the arginine arms in the major groove. Thus, the de novo designed compound BAP constitutes one of the very rare intercalators which, similar to the antitumor drugs mitoxantrone and ditercalinium, binds DNA in the major groove rather than in the minor groove.  相似文献   

13.
Quinolones are potent broad spectrum antibacterial drugs that target the bacterial type II DNA topoisomerases. Their cytotoxicity derives from their ability to shift the cleavage-religation equilibrium required for topoisomerase action toward cleavage, thereby effectively trapping the enzyme on the DNA. It has been proposed that these drugs act by binding to the enzyme-DNA complex. Using catalytically inactive and quinolone-resistant mutant topoisomerase IV proteins, nitrocellulose filter DNA binding assays, and KMnO4 probing of drug-DNA and drug-DNA-enzyme complexes, we show: (i) that norfloxacin binding to DNA induces a structural alteration, which probably corresponds to an unwinding of the helix, that is exacerbated by binding of the topoisomerase and by binding of the drug to the enzyme and (ii) that formation of this structural perturbation in the DNA precedes DNA cleavage by the topoisomerase in the ternary complex. We conclude that cleavage of the DNA and the resultant opening of the DNA gate during topoisomerization requires the induction of strain in the DNA that is bound to the enzyme. We suggest that quinolones may act to accelerate the rate of DNA cleavage by stimulating acquisition of this structural perturbation in the ternary complex.  相似文献   

14.
Beyond the known mutagenic properties of DNA lesions, recent evidence indicates that several forms of genomic damage dramatically influence the catalytic activities of DNA topoisomerases. Apurinic sites, apyrimidinic sites, base mismatches, and ultraviolet photoproducts all enhance topoisomerase I-mediated DNA cleavage when they are located in close proximity to the point of scission. Furthermore, when located between the points of scission of a topoisomerase II cleavage site, these same lesions (with the exception of ultraviolet photoproducts) greatly stimulate the cleavage activity of the type II enzyme. Thus, as found for anticancer drugs, lesions have the capacity to convert topoisomerases from essential cellular enzymes to potent DNA toxins. These findings raise exciting new questions regarding the mechanism of anticancer drugs, the physiological functions of topoisomerases, and the processing of DNA damage in the cell.  相似文献   

15.
Eukaryotic type IB topoisomerases catalyze the cleavage and rejoining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. The 314-amino acid vaccinia topoisomerase is the smallest member of this family and is distinguished from its cellular counterparts by its specificity for cleavage at the target sequence 5'-CCCTT downward arrow. Here we show that Topo-(81-314), a truncated derivative that lacks the N-terminal domain, performs the same repertoire of reactions as the full-sized topoisomerase: relaxation of supercoiled DNA, site-specific DNA transesterification, and DNA strand transfer. Elimination of the N-terminal domain slows the rate of single-turnover DNA cleavage by 10(-3.6), but has little effect on the rate of single-turnover DNA religation. DNA relaxation and strand cleavage by Topo-(81-314) are inhibited by salt and magnesium; these effects are indicative of reduced affinity in noncovalent DNA binding. We report that identical properties are displayed by a full-length mutant protein, Topo(Y70A/Y72A), which lacks two tyrosine side chains within the N-terminal domain that contact the DNA target site in the major groove. We speculate that Topo-(81-314) is fully competent for transesterification chemistry, but is compromised with respect to a rate-limiting precleavage conformational step that is contingent on DNA contacts made by Tyr-70 and Tyr-72.  相似文献   

16.
We have employed a broad range of spectroscopic, calorimetric, DNA cleavage, and DNA winding/unwinding measurements to characterize the DNA binding and topoisomerase I (TOP1) poisoning properties of three terbenzimidazole analogues, 5-phenylterbenzimidazole (5PTB), terbenzimidazole (TB), and 5-(naphthyl[2,3-d]imidazo-2-yl)bibenzimidazole (5NIBB), which differ with respect to the substitutions at their C5 and/or C6 positions. Our results reveal the following significant features. (i) The overall extent to which the three terbenzimidazole analogues poison human TOP1 follows the hierarchy 5PTB > TB > 5NIBB. (ii) The impact of the three terbenzimidazole analogues on the superhelical state of plasmid DNA depends on the [total ligand] to [base pair] ratio (rbp), having no effect on DNA superhelicity at rbp ratios < or = 0.1, while weakly unwinding DNA at rbp ratios > 0.1. This weak DNA unwinding activity exhibited by the three terbenzimidazoles does not appear to be correlated with the abilities of these compounds to poison TOP1. (iii) Upon complexation with both poly(dA).poly(dT) and salmon testes DNA, the three terbenzimidazole analogues exhibit flow linear dichroism properties characteristic of a minor groove-directed mode of binding to these host DNA duplexes. (iv) The apparent minor groove binding affinities of the three terbenzimidazole analogues for the d(GA4T4C)2 duplex follow a qualitatively similar hierarchy to that noted above for ligand-induced poisoning of human TOP1-namely, 5PTB > TB > 5NIBB. In the aggregate, our results suggest that DNA minor groove binding, but not DNA unwinding, is important in the poisoning of TOP1 by terbenzimidazoles.  相似文献   

17.
We determined the inhibitory activities of gatifloxacin against Staphylococcus aureus topoisomerase IV, Escherichia coli DNA gyrase, and HeLa cell topoisomerase II and compared them with those of several quinolones. The inhibitory activities of quinolones against these type II topoisomerases significantly correlated with their antibacterial activities or cytotoxicities (correlation coefficient [r] = 0.926 for S. aureus, r = 0.972 for E. coli, and r = 0.648 for HeLa cells). Gatifloxacin possessed potent inhibitory activities against bacterial type II topoisomerases (50% inhibitory concentration [IC50] = 13.8 microg/ml for S. aureus topoisomerase IV; IC50 = 0.109 microg/ml for E. coli DNA gyrase) but the lowest activity against HeLa cell topoisomerase II (IC50 = 265 microg/ml) among the quinolones tested. There was also a significant correlation between the inhibitory activities of quinolones against S. aureus topoisomerase IV and those against E. coli DNA gyrase (r = 0.969). However, the inhibitory activity against HeLa cell topoisomerase II did not correlate with that against either bacterial enzyme. The IC50 of gatifloxacin for HeLa cell topoisomerase II was 19 and was more than 2,400 times higher than that for S. aureus topoisomerase IV and that for E. coli DNA gyrase. These ratios were higher than those for other quinolones, indicating that gatifloxacin possesses a higher selectivity for bacterial type II topoisomerases.  相似文献   

18.
Two mutations in vaccinia virus topoisomerase I, K167D and G226N, have been characterized. SOS induction was observed in Escherichia coli expressing vaccinia topoisomerase I with either one of these mutations. The mutant enzymes were purified to homogeneity and compared with the wild type enzyme for relaxation activity and the partial activities of substrate binding, site-specific DNA cleavage and DNA religation to determine the mechanism of SOS induction. The K167D mutant enzyme had reduced binding affinity for the DNA substrate with a Kapp that was 10-fold higher than wild type. Nevertheless, in reactions with high enzyme concentration, its substrate cleavage activity was 90% that of wild type. The G226N mutant enzyme had virtually wild type binding and cleavage activities. However, intermolecular religation by these two mutants were observed to be significantly reduced. The cleavage complexes formed with the K167D and G226N mutants were more stable to high salt than the wild type cleavable complex. We propose that these mutants in vivo induce the SOS response in E. coli due to the shift of topoisomerase cleavage-religation equilibrium towards cleavage and increased stability of the cleavage complex. The mutation thus has a similar effect as the topoisomerase-targeting inhibitors that turn topoisomerases into DNA damaging agents.  相似文献   

19.
The exo isomer of aflatoxin B1 (AFB1) 8,9-epoxide appears to be the only product of AFB1 involved in reaction with DNA and reacts with the N7 atom of guanine via an SN2 reaction from an intercalated state. Although the epoxide hydrolyzes rapidly in H2O (0.6 s-1 at 25 degrees C), very high yields of DNA adduct result. Experimental binding data were fit to a model in which the epoxide forms a reversible complex with calf thymus DNA (Kd = 0.43 mg ml-1, or 1.4 mM monomer equivalents) and reacts with guanine with a rate of 35 s-1. Stopped-flow kinetic analysis revealed attenuation of fluorescence in the presence of DNA that was dependent on DNA concentration. Kinetic spectral analysis revealed that this process represents conjugation of epoxide with DNA, with an extrapolated rate maximum of 42 s-1 and half-maximal velocity at a DNA concentration of 1.8 mg ml-1 (5.8 mM monomer equivalents). The rate of hydrolysis of the epoxide was accelerated by calf thymus DNA in the range of pH 6-8, with a larger enhancement at the lower pH (increase of 0.23 s-1 at pH 6.2 with 0.17 mg DNA ml-1). The same rate enhancement effect was observed with poly[dA-dT].poly[dA-dT], in which the epoxide can intercalate but not form significant levels of N7 purine adducts, and with single-stranded DNA. The increased rate of hydrolysis by DNA resembles that reported earlier for epoxides of polycyclic hydrocarbons and is postulated to involve a previously suggested localized proton field on the periphery of DNA. The epoxide preferentially intercalates between base pairs, and the proton field is postulated to provide acid catalysis to the conjugation reaction.  相似文献   

20.
For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号