首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustered microcalcifications on X-ray mammograms are an important sign in the detection of breast cancer. A statistical texture analysis method, called the surrounding region dependence method (SRDM), is proposed for the detection of clustered microcalcifications on digitized mammograms. The SRDM is based on the second-order histogram in two surrounding regions. This method defines four textural features to classify region of interests (ROIs) into positive ROIs containing clustered microcalcifications and negative ROIs of normal tissues. The database is composed of 64 positive and 76 negative ROI images, which are selected from digitized mammograms with a pixel size of 100 × 100 m2 and 12 bits per pixel. An ROI is selected as an area of 128 × 128 pixels on the digitized mammograms. In order to classify ROIs into the two types, a three-layer backpropagation neural network is employed as a classifier. A segmentation of individual microcalcifications is also proposed to show their morphologies. The classification performance of the proposed method is evaluated by using the round-robin method and a free-response receiver operating-characteristics (FROC) analysis. A receiver operating-characteristics (ROC) analysis is employed to present the results of the round-robin testing for the case of several hidden neurons. The area under the ROC curve, A z, is 0.997, which is achieved in the case of 4 hidden neurons. The FROC analysis is performed on 20 cropped images. A cropped image is selected as an area of 512 × 512 pixels on the digitized mammograms. In terms of the FROC, a sensitivity of more than 90% is obtained with a low false-positive (FP) detection rate of 0.67 per cropped image.  相似文献   

2.
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.  相似文献   

3.
Breast cancer continues to be a significant public health problem in the United States. Approximately, 182,000 new cases of breast cancer are diagnosed and 46,000 women die of breast cancer each year. Even more disturbing is the fact that one out of eight women in the United States will develop breast cancer at some point during her lifetime. Since the cause of breast cancer remains unknown, primary prevention becomes impossible. Computer-aided mammography is an important and challenging task in automated diagnosis. It has great potential over traditional interpretation of film-screen mammography in terms of efficiency and accuracy. Microcalcifications are the earliest sign of breast carcinomas and their detection is one of the key issues for breast cancer control. In this study, a novel approach to microcalcification detection based on fuzzy logic technique is presented. Microcalcifications are first enhanced based on their brightness and nonuniformity. Then, the irrelevant breast structures are excluded by a curve detector. Finally, microcalcifications are located using an iterative threshold selection method. The shapes of microcalcifications are reconstructed and the isolated pixels are removed by employing the mathematical morphology technique. The essential idea of the proposed approach is to apply a fuzzified image of a mammogram to locate the suspicious regions and to interact the fuzzified image with the original image to preserve fidelity. The major advantage of the proposed method is its ability to detect microcalcifications even in very dense breast mammograms. A series of clinical mammograms are employed to test the proposed algorithm and the performance is evaluated by the free-response receiver operating characteristic curve. The experiments aptly show that the microcalcifications can be accurately detected even in very dense mammograms using the proposed approach  相似文献   

4.
We derive and demonstrate a nonlinear scale-space filter and its application in generating a nonlinear multiresolution system. For each datum in a signal, a neighborhood of weighted data is used for clustering. The cluster center becomes the filter output. The filter is governed by a single scale parameter that dictates the spatial extent of nearby data used for clustering. This, together with the local characteristic of the signal, determines the scale parameter in the output space, which dictates the influences of these data on the output. This filter is thus adaptive and data driven. It provides a mechanism for (a) removing impulsive noise, (b) improved smoothing of nonimpulsive noise, and (c) preserving edges. Comparisons with Gaussian scale-space filtering and median filters are made using real images. Using the architecture of the Laplacian pyramid and this nonlinear filter for interpolation, we construct a nonlinear multiresolution system that has two features: (1) edges are well preserved at low resolutions, and (2) difference signals are small and spatially localized. This filter implicitly presents a new mechanism for detecting discontinuities differing from techniques based on local gradients and line processes. This work shows that scale-space filtering, nonlinear filtering, and scale-space clustering are closely related and provides a framework within which further image processing, image coding, and computer vision problems can be investigated.  相似文献   

5.
Wavelet transforms for detecting microcalcifications in mammograms   总被引:1,自引:0,他引:1  
Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.  相似文献   

6.
Region-based contrast enhancement of mammograms   总被引:9,自引:0,他引:9  
Diagnostic features in mammograms vary widely in size and shape. Classical image enhancement techniques cannot adapt to the varying characteristics of such features. An adaptive method for enhancing the contrast of mammographic features of varying size and shape is presented. The method uses each pixel in the image as a seed to grow a region. The extent and shape of the region adapt to local image gray-level variations, corresponding to an image feature. The contrast of each region is calculated with respect to its individual background. Contrast is then enhanced by applying an empirical transformation based on each region's seed pixel value, its contrast, and its background. A quantitative measure of image contrast improvement is also defined based on a histogram of region contrast and used for comparison of results. Using mammogram images digitized at high resolution (less than 0.1 mm pixel size), it is shown that the validity of microcalcification clusters and anatomic details is considerably improved in the processed images.  相似文献   

7.
This paper presents an approach for detecting micro-calcifications in digital mammograms employing wavelet-based subband image decomposition. The microcalcifications appear in small clusters of few pixels with relatively high intensity compared with their neighboring pixels. These image features can be preserved by a detection system that employs a suitable image transform which can localize the signal characteristics in the original and the transform domain. Given that the microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands, suppressing the low-frequency subband, and, finally, reconstructing the mammogram from the subbands containing only high frequencies. Preliminary experiments indicate that further studies are needed to investigate the potential of wavelet-based subband image decomposition as a tool for detecting microcalcifications in digital mammograms  相似文献   

8.
Mammographic feature enhancement by multiscale analysis   总被引:26,自引:0,他引:26  
Introduces a novel approach for accomplishing mammographic feature analysis by overcomplete multiresolution representations. The authors show that efficient representations may be identified within a continuum of scale-space and used to enhance features of importance to mammography. Methods of contrast enhancement are described based on three overcomplete multiscale representations: 1) the dyadic wavelet transform (separable), 2) the phi-transform (nonseparable, nonorthogonal), and 3) the hexagonal wavelet transform (nonseparable). Multiscale edges identified within distinct levels of transform space provide local support for image enhancement. Mammograms are reconstructed from wavelet coefficients modified at one or more levels by local and global nonlinear operators. In each case, edges and gain parameters are identified adaptively by a measure of energy within each level of scale-space. The authors show quantitatively that transform coefficients, modified by adaptive nonlinear operators, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. The authors' results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. They demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology, one can improve chances of early detection while requiring less time to evaluate mammograms for most patients.  相似文献   

9.
Robust detection of small targets is very important in IRST (Infrared Search and Track). This paper presents a novel mathematical method for the incoming target detection problem in cluttered background motivated from the robust properties of human visual system (HVS). The HVS shows the best efficiency and robustness for an object detection task. The robust properties of the HVS are contrast mechanism, multi-resolution representation, size adaptation, and pop-out phenomena. Based on these facts, a plausible computational model integrating these facts is proposed using Laplacian scale-space theory and Tune-Max based optimization method. Simultaneous target signal enhancement and background clutter suppression is achieved by tuning and maximizing the signal-to-clutter ratio (TMSCR) in Laplacian scale-space. At the first stage, the Tune-Max of the signal to background contrast produces candidate targets with adapted scale. At the second stage, the Tune-Max of the signal-to-clutter ratio (SCR) produces maximal SCR which is used to pop-out detections. Experimental evaluation results for the incoming target sequence validate the upgraded detection capability of the proposed method compared with the Top-hat method at the same false alarm rate. Experimental results for the six kinds of cluttered background images show that the proposed TMSCR produces less false alarms (4.3 times reduction) compared to the Top-hat at the same detection rate.  相似文献   

10.
This paper deals with the problem of texture feature extraction in digital mammograms. We use the extracted features to discriminate between texture representing clusters of microcalcifications and texture representing normal tissue. Having a two-class problem, we suggest a texture feature extraction method based on a single filter optimized with respect to the Fisher criterion. The advantage of this criterion is that it uses both the feature mean and the feature variance to achieve good feature separation. Image compression is desirable to facilitate electronic transmission and storage of digitized mammograms. In this paper, we also explore the effects of data compression on the performance of our proposed detection scheme. The mammograms in our test set were compressed at different ratios using the Joint Photographic Experts Group compression method. Results from an experimental study indicate that our scheme is very well suited for detecting clustered microcalcifications in both uncompressed and compressed mammograms. For the uncompressed mammograms, at a rate of 1.5 false positive clusters/image our method reaches a true positive rate of about 95%, which is comparable to the best results achieved so far. The detection performance for images compressed by a factor of about four is very similar to the performance for uncompressed images.  相似文献   

11.
Normalization of local contrast in mammograms   总被引:1,自引:0,他引:1  
Equalizing image noise has been shown to be an important step in automatic detection of microcalcifications in digital mammograms. In this study, an accurate adaptive approach for noise equalization is presented and investigated. No additional information obtained from phantom recordings is involved in the method, which makes the approach robust and independent of film type and film development characteristics. Furthermore, it is possible to apply the method on direct digital mammograms as well. In this study, the adaptive approach is optimized by investigating a number of alternative approaches to estimate the image noise. The estimation of high-frequency noise as a function of the grayscale is improved by a new technique for dividing the grayscale in sample intervals and by using a model for additive high-frequency noise. It is shown that the adaptive noise equalization gives substantially better detection results than does a fixed noise equalization. A large database of 245 digitized mammograms with 341 clusters was used for evaluation of the method.  相似文献   

12.
一种通用的仿射不变特征区域提取方法   总被引:1,自引:1,他引:0       下载免费PDF全文
蔡红苹  雷琳  陈涛  粟毅 《电子学报》2008,36(4):672-678
本文利用尺度-空间理论和自相关矩阵的局部形状提出了一种通用的提取仿射不变特征区域的方法.首先,在尺度-空间中对图像的归一化高斯微分求三维局部极大值获得特征点和特征尺度位置,然后在特征点的特征尺度上用自相关矩阵刻画局部的灰度变化,提取的椭圆区域即为仿射不变特征区域.在此通用方法框架下构造了Harris3D、Laplace3D、Hessian3D和Localjet43D四种仿射不变特征区域算法.实验结果表明这四种算法都具有照度、旋转和尺度不变性.用本文设计的一种仿射不变性仿真实验方法验证了算法的仿射不变性.比较四种算法发现除了Harris3D性能稍差外其他三种算法性能接近.  相似文献   

13.
Clustered microcalcifications on X-ray mammograms are an important sign for early detection of breast cancer. Texture-analysis methods can be applied to detect clustered microcalcifications in digitized mammograms. In this paper, a comparative study of texture-analysis methods is performed for the surrounding region-dependence method, which has been proposed by the authors, and conventional texture-analysis methods, such as the spatial gray-level dependence method, the gray-level run-length method, and the gray-level difference method. Textural features extracted by these methods are exploited to classify regions of interest (ROI's) into positive ROI's containing clustered microcalcifications and negative ROI's containing normal tissues. A three-layer backpropagation neural network is used as a classifier. The results of the neural network for the texture-analysis methods are evaluated by using a receiver operating-characteristics (ROC) analysis. The surrounding region-dependence method is shown to be superior to the conventional texture-analysis methods with respect to classification accuracy and computational complexity.  相似文献   

14.
Clusters of microcalcifications in mammograms are an important early sign of breast cancer. This paper presents a computer-aided diagnosis (CAD) system for the automatic detection of clustered microcalcifications in digitized mammograms. The proposed system consists of two main steps. First, potential microcalcification pixels in the mammograms are segmented out by using mixed features consisting of wavelet features and gray level statistical features, and labeled into potential individual microcalcification objects by their spatial connectivity. Second, individual microcalcifications are detected by using a set of 31 features extracted from the potential individual microcalcification objects. The discriminatory power of these features is analyzed using general regression neural networks via sequential forward and sequential backward selection methods. The classifiers used in these two steps are both multilayer feedforward neural networks. The method is applied to a database of 40 mammograms (Nijmegen database) containing 105 clusters of microcalcifications. A free-response operating characteristics (FROC) curve is used to evaluate the performance. Results show that the proposed system gives quite satisfactory detection performance. In particular, a 90% mean true positive detection rate is achieved at the cost of 0.5 false positive per image when mixed features are used in the first step and 15 features selected by the sequential backward selection method are used in the second step. However, we must be cautious when interpreting the results, since the 20 training samples are also used in the testing step.  相似文献   

15.
钙化信息是乳腺癌早期诊断的一个重要依据,针对钙化点检测检出率较低和假阳性较高的问题,提出一种基于多尺度空间滤波和l1范数最近邻分类的乳腺图像微钙化点检测算法.首先利用多尺度空间滤波方法得到原图像的多尺度显著特征图,然后通过基于人眼视觉特性的钙化点分割方法得到粗检测钙化点的二值图像,并送入l1范数最近邻分类器去除假阳性点...  相似文献   

16.
Segmentation of microcalcifications in mammograms   总被引:4,自引:0,他引:4  
A systematic method for the detection and segmentation of microcalcifications in mammograms is presented. It is important to preserve size and shape of the individual calcifications as exactly as possible. A reliable diagnosis requires both rates of false positives as well as false negatives to be extremely low. The proposed approach uses a two-stage algorithm for spot detection and shape extraction. The first stage applies a weighted difference of Gaussians filter for the noise-invariant and size-specific detection of spots. A morphological filter reproduces the shape of the spots. The results of both filters are combined with a conditional thickening operation. The topology and the number of the spots are determined with the first filter, and the shape by means of the second. The algorithm is tested with a series of real mammograms, using identical parameter values for all images. The results are compared with the judgement of radiological experts, and they are very encouraging. The described approach opens up the possibility of a reproducible segmentation of microcalcifications, which is a necessary precondition for an efficient screening program.  相似文献   

17.
付国庆 《电子设计工程》2012,20(18):178-181
提出了一种用各向异性双变量拉普拉斯函数模型去模拟NSCT域的系数的图像去噪算法,这种各向异性双边拉普拉斯模型不仅考虑了NSCT系数相邻尺度间的父子关系,同时满足自然图像不同尺度间NSCT系数方差具有各向异性的特征,基于这种统计模型,文中先推导出了一种各向异性双变量收缩函数的近似形式,然后基于贝叶斯去噪法和局部方差估计将这种新的阈值收缩函数应用于NSCT域,实验结果表明文中提出的方法同小波域BiShrink算法、小波域ProbShrink算法、小波域NeighShrink算法相比,能够有效地去除图像的高斯噪声,提高了图像的峰值信噪比;并较完整地保持了图像的纹理和边缘等细节信息,从而明显改善了图像的视觉效果。  相似文献   

18.
This paper proposes an adaptive image enhancement method for mammographic images, which is based on the first derivative and the local statistics. The adaptive enhancement method consists of three processing steps. The first step is to remove the film artifacts which may be misread as microcalcifications. The second step is to compute the gradient images by using the first derivative operators. The third step is to enhance the important features of the mammographic image by adding the adaptively weighted gradient images. Local statistics of the image are utilized for adaptive realization of the enhancement, so that image details can be enhanced and image noises can be suppressed. The objective performances of the proposed method were compared with those by the conventional image enhancement methods for a simulated image and the seven mammographic images containing real microcalcifications. The performance of the proposed method was also evaluated by means of the receiver operating characteristics (ROC) analysis for 78 real mammographic images with and without microcalcifications  相似文献   

19.
采用尺度空间理论的红外弱小目标检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了检测红外场景中尺寸大小变化的弱小目标,针对传统滤波方法中固定大小滤波核对此类特性目标检测表现出的不足,提出一种基于尺度空间理论的红外弱小目标检测方法。首先对弱小目标特性进行分析,提出采用点扩散函数形式的目标模型来描述弱小目标;采用固定自适应邻域的方法对原始红外图像进行预处理,抑制背景杂波,增强目标能量;依据尺度规范化后的拉普拉斯尺度空间对图像不同元素滤波响应的不同,获取图像中的可疑目标,利用可疑目标点与其周围像素的梯度关系得到可疑目标点的中心坐标,并据此得到其在图中的尺寸大小;对每个可疑目标划分一个自适应大小窗口,获取分割阈值,分割出真实目标。实验结果表明,该方法能较好地检测出弱小目标,且具有较低的虚警率。  相似文献   

20.
Single and multiscale detection of masses in digital mammograms   总被引:1,自引:0,他引:1  
Scale is an important issue in the automated detection of masses in mammograms, due to the range of possible sizes masses can have. In this work, it was examined if detection of masses can be done at a single scale, or whether it is more appropriate to use the output of the detection method at different scales in a multiscale scheme. Three different pixel-based mass-detection methods were used for this purpose. The first method is based on convolution of a mammogram with the Laplacian of a Gaussian, the second method is based on correlation with a model of a mass, and the third is a new approach, based on statistical analysis of gradient-orientation maps. Experiments with simulated masses indicated that little can be gained by applying the methods at a number of scales. These results were confirmed by experiments on a set of 71 cases (132 mammograms) containing a malignant tumor. The performance of each method in a multiscale scheme was similar to the performance at the optimal single scale. A slight improvement was found for the correlation method when the output of different scales was combined. This was especially evident at low specificity levels. The correlation method and the gradient-orientation-analysis method have similar performances. A sensitivity of approximately 75% is reached at a level of one false positive per image. The method based on convolution with the Laplacian of the Gaussian performed considerably worse, in both a single and multiscale scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号