首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a general turn model, called a Tree-turn model, for tree-based routing algorithms on irregular topologies. In the Tree-turn model, links are classified as either a tree link or a cross link and six directions are associated with the channels of links. Then we can prohibit some of the turns formed by these six directions such that an efficient deadlock-free routing algorithm, Tree-turn routing, can be derived. There are three phases to develop the Tree-turn routing. First, a coordinated tree for a given topology is created. Second, a communication graph is constructed based on the topology and the corresponding coordinated tree. Third, the forwarding table is set up by using all-pairs shortest path algorithm according to the prohibited turns in the Tree-turn model and the directions of the channels in the communication graph. To evaluate the performance of the proposed Tree-turn routing, we develop a simulator and implement Tree-turn routing along with up*/down* routing, L-turn routing, and up*/down* routing with DFS methodology. The simulation results show that Tree-turn routing outperforms other routing algorithms for all the test cases.  相似文献   

2.
A deadlock-free multicast scheme called prefix multicasting in irregular networks (i.e., networks with irregular topology) is studied. In prefix routing, a compact routing table is associated with each node (processor). Basically, each outgoing channel of a node is assigned a special label and an outgoing channel is selected if its label is a prefix of the label of the destination node. Node and channel labelling in an irregular network is based on a pre-defined spanning tree which may or may not be minimum. The routing process follows a two-phase process of going up and then down along the spanning tree, with a possible cross channel between two branches of the tree between two phases. It is shown that the proposed routing scheme is deadlock- and livelock-free. The approach is extended to multicasting in which the multicast packet is first forwarded up the tree to the longest common prefix (LCP) of destinations in the multicast. The packet is then treated as a multi-head worm that can split at branches of the spanning tree as the packet is sent down the tree.  相似文献   

3.
A theory for the design of deadlock-free adaptive routing algorithms for wormhole networks, proposed by the author (1991, 1993), supplies sufficient conditions for an adaptive routing algorithm to be deadlock-free, even when there are cyclic dependencies between channels. Also, two design methodologies were proposed. Multicast communication refers to the delivery of the same message from one source node to an arbitrary number of destination nodes. A tree-like routing scheme is not suitable for hardware-supported multicast in wormhole networks because it produces many headers for each message, drastically increasing the probability of a message being blocked. A path-based multicast routing model was proposed by Lin and Ni (1991) for multicomputers with 2D-mesh and hypercube topologies. In this model, messages are not replicated at intermediate nodes. This paper develops the theoretical background for the design of deadlock-free adaptive multicast routing algorithms. This theory is valid for wormhole networks using the path-based routing model. It is also valid when messages with a single destination and multiple destinations are mixed together. The new channel dependencies produced by messages with several destinations are studied. Also, two theorems are proposed, developing conditions to verify that an adaptive multicast routing algorithm is deadlock-free, even when there are cyclic dependencies between channels. As an example, the multicast routing algorithms of Lin and Ni are extended, so that they can take advantage of the alternative paths offered by the network  相似文献   

4.
Networks of workstations (NOWs) are being considered as a cost-effective alternative to parallel computers. Most NOWs are arranged as a switch-based network and provide mechanisms for discovering the network topology. Hence, they provide support for both regular and irregular topologies, which makes routing and deadlock avoidance quite complicated. Current proposals use the up*/down* routing algorithm to remove cyclic dependencies between channels and avoid deadlock. However, routing is considerably restricted and most messages must follow nonminimal paths, increasing latency and wasting resources. We propose and evaluate a simple and effective methodology to compute up*/down* routing tables. The new methodology is based on computing a depth-first search (DPS) spanning tree on the network graph that decreases the number of routing restrictions with respect to the breadth-first search (BFS) spanning tree used by the traditional methodology. Additionally, we propose different heuristic rules for computing the spanning trees to improve the efficiency of up*/down* routing. Evaluation results for several different topologies show that computing the up*/down* routing tables by using the new methodology increases throughput by a factor of up to 2.48 in large networks with respect to the traditional methodology, and also reduces latency significantly.  相似文献   

5.
Cut-through switching promises low latency delivery and has been used in new generation switches, especially in high speed networks demanding low communication latency. The interconnection of cut-through switches provides an excellent network platform for high speed local area networks (LANs). For cost and performance reasons. Irregular topologies should be supported in such a switch-based network. Switched irregular networks are truly incrementally scalable and have potential to be reconfigured to adapt to the dynamics of network traffic conditions. Due to the arbitrary topologies of networks, it is critical to develop an efficient deadlock-free routing algorithm. A novel deadlock-free adaptive routing algorithm called adaptive-trail routing is proposed to allow irregular interconnection of cut-through switches. The adaptive routing algorithm is based on two unidirectional adaptive trails constructed from two opposite unidirectional Eulerian trails. Some heuristics are suggested in terms of the selection of Eulerian trails, the avoidance of long routing paths, and the degree of adaptivity. Extensive simulation experiments are conducted to evaluate the performance of the proposed and two other routing algorithms under different topologies and traffic workloads  相似文献   

6.
Networks of workstations are rapidly emerging as a cost-effective alternative to parallel computers. Switch-based interconnects with irregular topology allow the wiring flexibility, scalability, and incremental expansion capability required in this environment. However, the irregularity also makes routing and deadlock avoidance on such systems quite complicated. In current proposals, many messages are routed following nonminimal paths, increasing latency and wasting resources. In this paper, we propose two general methodologies for the design of adaptive routing algorithms for networks with irregular topology. Routing algorithms designed according to these methodologies allow messages to follow minimal paths in most cases, reducing message latency and increasing network throughput. As an example of application, we propose two adaptive routing algorithms for ANI (previously known as Autonet). They can be implemented either by duplicating physical channels or by splitting each physical channel into two virtual channels. In the former case, the implementation does not require a new switch design. It only requires changing the routing tables and adding links in parallel with existing ones, taking advantage of spare switch ports. In the latter case, a new switch design is required, but the network topology is not changed. Evaluation results for several different tapologies and message distributions show that the new routing algorithms are able to increase throughput for random traffic by a factor of up to 4 with respect to the original up*/down* algorithm, also reducing latency significantly. For other message distributions, throughput is increased more than seven times. We also show that most of the improvement comes from the use of minimal routing  相似文献   

7.
In this paper, we will propose a Nash genetic algorithm (Nash GA) for solving a hierarchical spanning tree network design problem, formulated as a bi-level programming problem. The proposed algorithm can be employed in designing the backbone topology in a hierarchical link-state (LS) routing domain. Because the well-designed backbone topology structure has a great impact on the overall routing performance in a hierarchical LS domain, the importance of this research is evident. The proposed algorithm is to find an optimal configuration of backbone network for backbone provider (BP) and distribution network for internet service provider (ISP), properly meeting two-aspect engineering goals: i.e., average message delay and connection costs. Also, it is assumed that there are the decision makers for BP and the decision makers for ISP join in the decision making process in order to non-cooperatively optimize the own objective function. From the experiment results, we can see clearly that our proposed algorithm can be employed in effectively designing the spanning tree network of hierarchical LS routing domain considering not only engineering aspects but also specific benefits from systematical layout of backbone network.  相似文献   

8.
Multicast communication services, in which the same message is delivered from a source node to an arbitrary number of destination nodes, are being provided in new-generation multicomputers. Broadcast is a special case of multicast in which a message is delivered to all nodes in the network. The nCUBE-2, a wormhole-routed hypercube multicomputer, provides hardware support for broadcast and a restricted form of multicast in which the destinations form a subcube. However, the broadcast routing algorithm adopted in the nCUBE-2 is not deadlock-free. In this paper, four multicast wormhole routing strategies for 2-D mesh multicomputers are proposed and studied. All of the algorithms are shown to be deadlock-free. These are the first deadlock-free multicast wormhole routing algorithms ever proposed. A simulation study has been conducted that compares the performance of these multicast algorithms under dynamic network traffic conditions in a 2-D mesh. The results indicate that a dual-path routing algorithm offers performance advantages over tree-based, multipath, and fixed-path algorithms  相似文献   

9.
由虫孔路由交换器连接而成的不规则拓扑网络,越来越多地用于构建工作站机群系统(NOWs),以实现高性能价格比的并行处理.采用虫孔路由技术,网络中容易发生死锁.交换器之间连接的不规则性,使路由避免死锁问题变得更加复杂.本文给出了在不规则网络中,设计基于拐弯模型的无死锁路由算法的一般方法,并采用扩展链路方向的方法得到多种路由策略,确定了up-first与down-last两种性能较优的路由算法.最后通过模拟实验,评价了算法的性能.  相似文献   

10.
This paper develops the theoretical background for the design of deadlock-free adaptive routing algorithms for virtual cut-through and store-and-forward switching. This theory is valid for networks using either central buffers or edge buffers. Some basic definitions and three theorems are proposed, developing conditions to verify that an adaptive algorithm is deadlock-free, even when there are cyclic dependencies between routing resources. Moreover, we propose a necessary and sufficient condition for deadlock-free routing. Also, a design methodology is proposed. It supplies fully adaptive, minimal and non-minimal routing algorithms, guaranteeing that they are deadlock-free. The theory proposed in this paper extends the necessary and sufficient condition for wormhole switching previously proposed by us. The resulting routing algorithms are more flexible than the ones for wormhole switching. Also, the design methodology is much easier to apply because it automatically supplies deadlock-free routing algorithms  相似文献   

11.
For pt.I see ibid., vol.16, no.5, p.412-427 (2005). Dynamic network reconfiguration is defined as the process of changing from one routing function to another while the network remains up and running. The main challenge is in avoiding deadlock anomalies while keeping restrictions on packet injection and forwarding minimal. Current approaches either require virtual channels in the network or they work only for a limited set of routing algorithms and/or fault patterns. In this paper, we present a methodology for devising deadlock free and dynamic transitions between old and new routing functions that is consistent with newly proposed theory [J. Duato et al., (2005)]. The methodology is independent of topology, can be applied to any deadlock-free routing function, and puts no restrictions on the routing function changes that can be supported. Furthermore, it does not require any virtual channels to guarantee deadlock freedom. This research is motivated by current trends toward using increasingly larger Internet and transaction processing servers based on clusters of PCs that have very high availability and dependability requirements, as well as other local, system, and storage area network-based computing systems.  相似文献   

12.
Networks of workstations are becoming increasingly popular as a cost-effective alternative to parallel computers. Typically, these networks connect workstations using irregular topologies, providing the wiring flexibility, scalability, and incremental expansion capability required in this environment. Recently, we proposed two methodologies for the design of adaptive routing algorithms for networks with irregular topology, as well as fully adaptive routing algorithms for these networks. These algorithms increase throughput considerably with respect to previously existing ones, but require the use of at least two virtual channels. In this paper, we propose a very efficient flow control protocol to support virtual channels when link wires are very long and/or have different lengths. This flow control protocol relies on the use of channel pipelining and control flits. Control traffic is minimized by assigning physical bandwidth to virtual channels until the corresponding message blocks or it is completely transmitted. Simulation results show that this flow control protocol performs as efficiently as an ideal network with short wires and flit-by-flit multiplexing. The effect of additional virtual channels per physical channel has also been studied, revealing that the optimal number of virtual channels varies with network size. The use of virtual channel priorities is also analyzed. The proposed flow control protocol may increase short message latency, due to long messages monopolizing channels and hindering the progress of short messages. Therefore, we have analyzed the impact of limiting the number of flits (block size) that a virtual channel may forward once it gets the link. Simulation results show that limiting the maximum block size causes the overall network performance to decrease  相似文献   

13.
The authors introduce a multiprocessor interconnection network, known as cube-connected Mobius ladders, which has an inherently deadlock-free routing strategy and hence has none of the buffering and computational overhead required by deadlock-avoidance message passing algorithms. The basic network has a diameter φ of 4n-1 for n2n+2 nodes and has a fixed node degree of 4. The network can be interval routed in two stages and can be represented as a Cayley graph. This is the only practical fixed degree topology of size O(2φ) which has an inherently deadlock-free routing strategy, making it ideally suited for medium and large sized transputer networks  相似文献   

14.
Several recent studies have shown that adaptive routing algorithms based on deadlock recovery have superior performance characteristics than those based on deadlock avoidance. Most of these studies, however, have relied on software simulation due to the lack of analytical modelling tools. In an effort towards filling this gap, this paper presents a new analytical model of compressionless routing in wormhole-routed hypercubes. This routing algorithm exploits the tight coupling between wormhole routers for flow control to detect and recover from potential deadlock situations. The advantages of compressionless routing include deadlock-free adaptive routing with no extra virtual channels, simple router design, and order-preserving message transmission. The proposed analytical model computes message latency by determining the message transmission time, blocking delay at each router, multiplexing delay at each network channel, and waiting time in the source before entering the network. The validity of the model is demonstrated by comparing analytical results with those obtained through simulation experiments.  相似文献   

15.
Clusters of workstations employ flexible topologies: regular, irregular, and hierarchical topologies have been used in such systems. The flexibility poses challenges for developing efficient collective communication algorithms since the network topology can potentially have a strong impact on the communication performance. In this paper, we consider the all-to-all broadcast operation on clusters with cut-through and store-and-forward switches. We show that near-optimal all-to-all broadcast on a cluster with any topology can be achieved by only using the links in a spanning tree of the topology when the message size is sufficiently large. The result implies that increasing network connectivity beyond the minimum tree connectivity does not improve the performance of the all-to-all broadcast operation when the most efficient topology specific algorithm is used. All-to-all broadcast algorithms that achieve near-optimal performance are developed for clusters with cut-through and clusters with store-and-forward switches. We evaluate the algorithms through experiments and simulations. The empirical results confirm our theoretical finding.  相似文献   

16.
This paper presents a theoretical framework for the design of deadlock-free fully adaptive routing algorithms for a general class of network topologies and switching techniques in a single, unified theory. A general theory is proposed that allows the design of deadlock avoidance-based as well as deadlock recovery-based wormhole and virtual cut-through adaptive routing algorithms that use a homogeneous or a heterogeneous (mixed) set of resources. The theory also allows channel queues to be allocated nonatomically, utilizing resources efficiently. A general methodology for the design of fully adaptive routing algorithms applicable to arbitrary network topologies is also proposed. The proposed theory and methodology allow the design of efficient network routers that require minimal resources for handling infrequent deadlocks  相似文献   

17.
We address routing in Networks-On-Chip (NoC) architectures that use irregular mesh topologies with Long-Range Links (LRL). These topologies create difficult conditions for routing algorithms, as standard algorithms assume a static, regular link structure and exploit the uniformity of regular meshes to avoid deadlock and maintain routability. We present a novel routing algorithm that can cope with these irregular topologies and adapt to run-time LRL insertion and topology reconfiguration. Our approach to accommodate dynamic topology reconfiguration is to use a new technique that decomposes routing relations into two stages: the calculation of output ports on the current minimal path and the application of routing restrictions designed to prevent deadlock. In addition, we present a selection function that uses local topology data to adaptively select optimal paths.The routing algorithm is shown to be deadlock-free, after which an analysis of all possible routing decisions in the region of an LRL is carried out. We show that the routing algorithm minimises the cost of sub-optimally placed LRL and display the hop savings available. When applied to LRLs of less than seven hops, the overall traffic hop count and associated routing energy cost is reduced. In a simulated 8 × 8 network the total input buffer usage across the network was reduced by 6.5%.  相似文献   

18.
Network-based parallel computing systems often require the ability to reconfigure the routing algorithm to reflect changes in network topology if and when voluntary or involuntary changes occur. The process of reconfiguring a network's routing capabilities may be very inefficient and/or deadlock-prone if not handled properly. We propose efficient and deadlock-free dynamic reconfiguration schemes that are applicable to routing algorithms and networks which use wormhole, virtual cut-through, or store-and-forward switching, combined with hard link-level flow control. One requirement is that the network architecture use virtual channels or duplicate physical channels for deadlock-handling as well as performance purposes. The proposed schemes do not impede the injection, transmission, or delivery of user packets during the reconfiguration process. Instead, they provide uninterrupted service, increased availability/reliability, and improved overall quality-of-service support as compared to traditional techniques based on static reconfiguration.  相似文献   

19.
A new theory of deadlock-free adaptive routing in wormhole networks   总被引:4,自引:0,他引:4  
The theoretical background for the design of deadlock-free adaptive routing algorithms for wormhole networks is developed. The author proposes some basic definitions and two theorems. These create the conditions to verify that an adaptive algorithm is deadlock-free, even when there are cycles in the channel dependency graph. Two design methodologies are also proposed. The first supplies algorithms with a high degree of freedom, without increasing the number of physical channels. The second methodology is intended for the design of fault-tolerant algorithms. Some examples are given to show the application of the methodologies. Simulations show the performance improvement that can be achieved by designing the routing algorithms with the new theory  相似文献   

20.
Message routing achieves the internode communication in parallel computers. A reliable routing is supposed to be deadlock-free and fault-tolerant. While many routing algorithms are able to tolerate a large number of faults enclosed by rectangular faulty blocks, there is no existing algorithm that is capable of handling irregular faulty patterns for wormhole networks. In this paper, a two-staged adaptive and deadlock-free routing algorithm called “Routing for Irregular Faulty Patterns” (RIFP) is proposed. It can tolerate irregular faulty patterns by transmitting messages from sources or to destinations within faulty blocks via multiple “intermediate nodes.” A method employed by RIFP is first introduced to generate intermediate nodes using the local failure information. By its aid, two communicating nodes can always exchange their data or intermediate results if there is at least one path between them. RIFP needs two virtual channels per physical link in meshes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号