首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ti—6Al—4V合金激光氮化前的预热研究   总被引:2,自引:0,他引:2  
为了得到薄厚均匀并且无裂纹的氮化表面,人们对激光氮化条件进行了大量研究。虽然通过对基材预热和淡化氮气气氛,可以避免裂纹产生,但由于难以精确确定预热温度且不能保证得到均匀的熔深,因而对工件较大面积改性时不适用。通过考察裂纹产生的趋势、熔深、激光道能量与试样温度变化之间的关系,探索出了在纯Ar气氛下用精确的激光道数对试样进行预热,然后氮化的工艺方法,可获得厚度均匀且无裂纹的氮化层。l实验部分基材为Ti-6A14V合金。用带有旋转装置的5kw连续CO。激光器进行激光氯化工艺研究。激光能量为2kw,光束半径为1mm,旋转…  相似文献   

2.
Ti—6Al—4V超塑性能及应用   总被引:3,自引:1,他引:3  
1前言钛基合全具有超塑性,其中Ti-6A1-4V以其优异的起塑性能而被认为是应用前景最好的结构钛合金,在结构合金起塑成形工艺研究和应用方面已经取得快速的发展和良好的经济效益.与其它钛基会金相比,亚一6周一4V的起塑性最好,应用广泛且成熟.Ti-6周一4V合金比强度高,用蚀性好,热稳定性好,但加工变形抗力高.由于其弹性模量值低,屈强比大,加工回弹严重,成形加工较困难,用常规的冲压、弯曲、锻造加工方法很难加工出航空航天所需要的高强度高精度零件.但利用其超塑性,不需要特殊的预处理就能在一定条件下进行等温模锻或挤压…  相似文献   

3.
用氢细胞Ti—6Al—4V合金显微组织的研究   总被引:4,自引:0,他引:4  
  相似文献   

4.
钛及其合金以其比强度、耐腐蚀和抗疲劳而为人们所称赞不已,其缺点则是抗磨损和抗擦伤能力都较低,从而限制了它们在摩擦零部件中的应用.目前,已有一些技术能够通过改变成分和显微组织来提高钛合金的表面硬度.诸如离于氮化、氮气氮化和盐浴氮化等传统的氮化技术都利用了作为氮扩散的结果而在表面层中形成TiN.TiN层的厚度是氮化温度、氮化时间和氮气压力的函  相似文献   

5.
采用热浸镀法在Ti6Al4V合金表面制备出TiAl3金属间化合物涂层,并在不同温度下对浸镀后的试样进行热扩散处理.通过XRD、SEM等分析手段对涂层结构和成分进行测试分析,探讨涂层形成机理.结果表明:Ti6Al4V合金经750℃ 5 min热浸铝后,在其表面形成了由纯铝和TiAl3组成的涂层,TiAl3合金层厚约1.5 μm;经550℃退火5h后,TiAl3含量增多而纯铝层含量则相应减少,纯铝层几近消失,合金层厚度约为40μm,涂层致密;经930℃退火5h后,表面的涂层转化为单相的TiAl3,产物纯净,但涂层中出现了较多的孔洞,自涂层表面到钛合金基体,孔洞浓度呈梯度变化.  相似文献   

6.
A novel process was developed for scalable fabrication of micro-fine spherical Ti–6Al–4V alloy powders. The hydrogenation-treated Ti–6Al–4V alloy ingot was mechanically crushed into particles and then sieved into three size grades. The powders were separately sent through the radio frequency (RF) argon plasma system for spheroidisation. The fabrication process and powder characteristics were investigated. The results indicate the alloy ingot upon hydrogenation treatment can be efficiently crushed into fine particles with size of 5–76?μm. During RF plasma processing, the powders are found to be greatly refined due to hydrogen decrepitation with subsequent transformation into spherical morphology. The effect of hydrogen decrepitation on particle refinement is impaired with decreasing particle size of feed powders. The spherical powders exhibit a narrow particle size distribution and the average size is in the range of 8.2–27.9?μm. The spheroidised powders mainly consist of β-Ti and TiH1.5.  相似文献   

7.
8.
《粉末冶金学》2013,56(2):102-110
Abstract

Powder preform forging is a technology that comprises the preparation of near net shape preforms through powder metallurgy and a subsequent hot forging in order to obtain the desired final shape. In this work, two Ti–6Al–4V powder preforms were sintered through spark plasma sintering (SPS) and then hot compressed in a horizontal dilatometer. Varying the temperature of the process, two full density preforms having different microstructures were produced: sintering at 950°C, a plate-like α was obtained, whereas sintering at 1050°C, an acicular α was obtained. The behaviour of the preforms under hot forging has been studied through hot compression tests carried out in a quenching and deformation dilatometer in a range of temperature and strain rates typically used in hot forging this alloy (850–1050°C, 0·01–1 s?1). Hot workability has been evaluated by measuring the stresses required for deformation and by analysing both the stress–strain curves recorded during testing and the microstructures after deformation. The main microstructural phenomena occurring during hot compression were individuated. The best conditions for the hot forging operation of SPS preform are temperatures above β transus, where the materials are deformed in a regime of dynamic recrystallisation, at every strain rate.  相似文献   

9.
The fatigue properties and the fracture mechanisms of the Ti–6Al–4V alloy produced by selective laser melting (SLM) from a powder of an CL41TiELI titanium alloy have been studied. Cylindrical blanks were grown at angles of 90° and 45° to a platform. The best fatigue strength is observed in the samples the blanks of which were grown at an angle of 45°. It is found that the structure of the SLM material can contain portions with unmelted powder particles, which are the places of initiation of fatigue cracks.  相似文献   

10.
孔洞、未熔粉、裂纹是在激光选区熔化制备试样过程中常见的缺陷,迄今为止,大量研究均集中在减少缺陷上,关于工艺参数对缺陷影响的研究较少。本文系统研究了工艺参数对激光选区熔化Ti6Al4V合金相对密度、表面粗糙度、力学性能的影响。结果表明,低激光功率、高扫描速度和高层厚将会引起不充分的粉末熔化以及球化效应。最佳工艺参数为激光功率200 W,扫描速度500 mm/s,层厚10 μm,扫描间距105 μm。在该参数下,试样的抗拉强度1077 MPa,屈服强度907 MPa。  相似文献   

11.
Laser cladding experiment of Ti + Al + SiO2 + C was carried out on Ti6Al4V alloy substrate, thenthe microstructure of the clad layer was analyzed with SEM and its Anti - oxidation function was discussed.Analyses microstructure show that the clad coating can be divided into three zones along the depth direction:clad, binding and heat - affected zones. Ti5Si3 in the clad zone exists in the form of fine dendrites, TiAl matrix filling among Ti5Si3 dendrites plays a role of connecting the Ti5Si3 with the TiAl3 and transferring load,so the clad coating has been strengthened obviously.  相似文献   

12.
利用自主研发的Di Metal-100型激光选区熔化设备制备与基板平面成不同倾斜角的Ti6Al4V非标准拉伸试样,研究熔化成形后合金的显微组织、物理和力学性能。结果表明,Ti6Al4V合金粉末熔化成形后的组织为针状α′马氏体和(α+β)相,随倾斜角度变化,试样中α/α′相与β相的相对含量也发生变化,倾斜角为45°试样中β相含量最高;α′马氏体呈柱状分布于(α+β)相中,并且方向始终平行于成形方向(Z轴方向)。随SLM成形试样的倾斜角从0°增加到90°,其相对密度先减小后增大,并在90°时达到最大值96.1%;试样的硬度和抗拉强度均先升高后降低,在45°时达到最大值,硬度为393 HV,抗拉强度为1 288 MPa;试样表面粗糙度Ra也呈先增大后减小的趋势,在0°时达到最小值8.77μm,在30°时达到最大值19.55μm。  相似文献   

13.
ABSTRACT

This work investigates the effect of Ta particle addition into a Ti6Al4V alloy processed by solid state sintering. The volume fraction of Ta ranged between 0 and 30?vol.-%. The sintering kinetics of powder mixes are evaluated by dilatometry. Sintered materials are characterised by SEM and XRD, and their mechanical properties are obtained from microhardness and compression tests. Sintering behaviour and final microstructure are affected by Ta particles, which slow down the densification, lower the temperature of α-to-β phase transition and stabilise the β phase. Mechanical properties, as microhardness, Young’s modulus and yield stress, depend on the microstructure reached after sintering and on the residual porosity. An equation expressing the Young’s modulus of Ti6Al4V/xTa alloy as function of x and porosity is proposed and validated. The materials with at least 20?vol.-% of Ta exhibited a high strength to modulus ratio, which is suitable for orthopaedic implants.  相似文献   

14.
粉末冶金Ti6Al4V合金的研究   总被引:1,自引:0,他引:1  
采用Ti粉、AlV中间合金粉,通过模压和真空烧结制备了Ti6Al4V合金,并通过随后的锻造和热处理来改变其组织和性能.通过金相显微镜、X射线衍射(XRD)仪、扫描电镜(SEM)及力学性能检测等分析手段,系统研究了压制压力对Ti6Al4V烧结体密度的影响,以及试样状态(烧结态及烧结淬火态)、锻造温度、淬火温度及时效温度等工艺参数对粉末冶金Ti6Al4V合金组织和性能的影响.结果表明:通过模压和烧结可制备出相对密度达97.4%的Ti6Al4V合金;Ti6Al4V烧结态及烧结淬火态合金经过锻造后,相对密度接近100%;通过不同热处理工艺得到不同组织和性能,能获得等轴组织,其α晶粒尺寸在5μm左右.  相似文献   

15.
16.
为了确定在ZG06Cr13Ni4Mo不锈钢板上激光熔覆In625镍基合金粉末的最佳生产工艺参数,采用响应曲面分析法设计并开展一系列的激光熔覆参数实验,并利用Desigh-Expert软件中Response Surface模块对最终数据进行方差定量分析。通过金相显微镜对多道搭接熔覆试样的表面形态和横截面组织进行了观察和定性分析,从而确定熔覆工艺的最佳参数组合。结果表明,在维持送粉量不变的条件下,熔覆层高度对激光功率与扫描速度的响应都比较明显;熔覆工艺的最佳参数组合为激光功率2000 W,送粉量84 g·min?1,扫描速度5 mm·s?1,在此参数下获得的熔覆试样具有高质量的熔覆层,无气孔和裂纹,且表面光滑。  相似文献   

17.
Al_3Ti_3CoCrCu_(0.5)FeMoNi高熵合金激光涂层的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用激光熔覆制作了单相组成的Al_3Ti_3CoCrCu_(0.5)FeMoNi合金涂层,通过退火处理使基体相析出二元金属间化合物,使用SEM、XRD、显微硬度计分析了涂层的组织形貌、相结构和硬度。结果表明,激光熔覆制得的Al_3Ti_3CoCrCu_(0.5)FeMoNi涂层由BCC单相组成,显微硬度为905.2HV;在500℃以下退火处理,涂层的相组成不变。700℃以上退火,涂层从BCC相中析出二元金属间化合物Al_3Ti_3相,析出相随退火温度升高逐渐长大。涂层硬度随退火温度的升高先降低后逐渐升高,Al2Ti3相析出导致涂层硬度升高。经过900℃退火后,涂层硬度达到938.8HV,超过了未退火时涂覆态的硬度。  相似文献   

18.
采用扫描电镜、显微硬度仪、X射线应力测量仪及透射电镜等对激光冲击强化Ti6Al4V合金的表面完整性进行了分析,采用MTS疲劳试验机测试了疲劳性能,并采用扫描电镜分析了疲劳断口,探讨了激光冲击强化机制。结果表明:经功率密度为15.9 GW/cm^2的激光处理后,其四点弯曲中值疲劳寿命较未处理试样提高了4.2~23.5倍;激光功率密度越大,试样的中值疲劳寿命越长。激光冲击强化表现出比喷丸强化更优的疲劳寿命增益效果。经激光冲击强化后,Ti6Al4V合金表面形成了深度为600~1400μm的残余压应力场,表面硬度比未强化区域提高了约10%,且亚表层内部的位错密度也有显著提高。  相似文献   

19.
采用磁脉冲成形和模压成形2种方法对置氢Ti6Al4V粉末进行轴向压制,然后在保护气氛下烧结,研究压制方式和烧结工艺对烧结体真空退火后组织/性能的影响.结果表明:磁脉冲压实的不同氢含量粉末坯体烧结并真空退火后的相对密度、硬度和抗压强度分别比传统模压500 MPa下压制的高8%~13%、9~17 HRA和254~1033M...  相似文献   

20.
应用高温拉伸实验研究了氢对Ti-6Al-4V合金超塑变形行为的影响,借助于OM、SEM、TEM和XRD等分析手段,分析了氢对钛合金组织演变的影响.结果表明:氢可促进合金中β相数量的增加,氢质量分数达到0.2%时合金出现马氏体组织,并随着氢含量的增加而逐渐粗化;适量的氢可以改善钛合金超塑变形行为,如降低流动应力和超塑变形温度、提高应变速率敏感指数m值;Ti-6Al-4V合金加入质量分数0.1%的氢,其峰值流动应力降低53%,变形温度降低约60℃,且由于氢的加入,使得超塑变形后的位错密度减少,说明氢促进了位错的运动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号