首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissimilar metal joint of titanium (Ti) to 304L stainless steel (SS) is essential in the nuclear industry for the dissolution of spent fuel that is carried out in boiling nitric acid in the dissolver vessel (made of Ti) and the dissolved solution is transported through the 304L SS pipes to the other plant components made of 304L SS. Because of the radioactive environment, leak tightness and corrosion resistance of this dissimilar joint are important. In this work, friction welding process was attempted to join Ti to 304L SS. Direct friction welding of Ti to 304L SS results in a stronger weld in which failure occurs in the Ti base metal during tensile testing. However, the joints have almost zero bend ductility that has been attributed to the formation of intermetallics due to mechanical alloying, strain hardening of Ti near the joint interface and residual stresses. Post-weld heat treatment marginally increases the bend ductility to 5° because of relieving of the effects of strain hardening and of residual stresses at the joint interface. Corrosion test in boiling nitric acid as per ASTM A-262 Practice C shows that the average corrosion rate is 10 mpy with the joints remaining intact after the corrosion test. The details of mechanical tests, microstructure analysis using optical and scanning electron microscopy, are discussed.  相似文献   

2.
Abstract

It is difficult to weld the dissimilar material combination of aluminium alloys and low alloy steels using fusion welding processes, on account of the formation of a brittle interlayer composed of intermetallic compound phases and the significant difference in physical and mechanical properties. In the present work an attempt has been made to join these materials via the friction welding method, i.e. one of the solid phase joining processes. In particular, the present paper describes the optimisation of friction welding parameters so that the intermetallic layer is narrow and joints of acceptable quality can be produced for a dissimilar joint between Al-Mg-Si alloy (AA6061) and Ni-Cr-Mo low alloy steel, using a design of experiment method. The effect of post-weld heat treatment on the tensile strength of the joints was then clarified. It was concluded that the friction time strongly affected the joint tensile strength, the latter decreasing rapidly with increasing friction time. The highest strength was achieved using the shortest friction time. The highest joint strength was greater than that of the AA6061 substrate in the as welded condition. This is due to the narrow width of the brittle intermetallic layer generated, which progressed from the peripheral (outer surface) region to the centreline region of the joint with increasing friction time. The joints in the as welded condition could be bent without cracking in a bend test. The joint tensile strength in the as welded condition was increased by heat treatment at 423 K (150° C), and then it decreased when the heat treatment temperature exceeded 423 K. All joints fractured in the AA6061 substrate adjacent to the interface except for the joints heated at 773 K (500° C). The joints fractured at the interface because of the occurrence of a brittle intermetallic compound phase.  相似文献   

3.
Weldability of the dissimilar weld joint between austenitic 304L(N) stainless steel (SS) and martensitic 403 SS made by gas tungsten arc welding process using ERNiCr-3 filler metal has been studied. For this study, 12 mm thick plates of these two materials were joined using a K-type weld groove joint, with the straight edge on the 403 SS side buttered using ERNiCr-3 filler wire. Two types of weld joints were prepared—one using as-buttered 403 SS and the other one with buttered and post-weld heat-treated 403 SS plate. The joint made with the as-buttered 403 SS plate exhibits good bend ductility and toughness on the heat-affected zone (HAZ) of the 403 SS side and it is comparable with that of the buttered and post-weld heat-treated 403SS weld joint properties. Thus, buttering of the 403 SS plate enabled dissimilar welding with the 304L(N) SS plate without any post-weld heat treatment because of auto tempering of the martensite present in the 403 SS HAZ formed due to weld thermal cycle.  相似文献   

4.
利用扫描电子显微镜并通过常温拉伸弯曲、低温冲击以及显微硬度等试验研究了FCAW,SMAW和GTAW三种不同的焊接工艺对TP304/SS400异种钢焊接接头组织和性能的影响. 结果表明,三种焊接工艺条件下,焊缝金相组织都为δ铁素体+奥氏体,但δ铁素体含量及形态分布有明显差异;FCAW焊缝中蠕虫状δ铁素体和GTAW焊缝中针状δ铁素体可有效提高韧性,故冲击韧性较高,SMAW焊缝中骨骼状δ铁素体对韧性不利,冲击韧性最低,且随冲击吸收能量的降低断口由韧性断裂转变为脆性断裂;三种焊接工艺条件下,焊接接头综合力学性能表现良好,整体显微硬度值变化不大.  相似文献   

5.
以1100铝、纯铜和304不锈钢为夹层,用爆炸复合法制备5052铝-316不锈钢(Al 5052-SS 316)复合板。采用不同工艺参数,包括相隔距离、炸药质量比(炸药质量与飞片质量比)和倾斜角得到实验结果。夹层的使用使焊接窗口的下边界发生位移,焊接区域增大40%。在此基础上,设计考虑第三个操作参数影响的三轴焊接窗口。使用夹层后,传统Al 5052-SS 316炸药复合界面形成的连续熔融层转变为光滑的界面,其中没有或存在少量的金属间化合物。含夹层复合层的显微硬度、抗拉强度和剪切强度均高于传统爆炸复合层,且使用不锈钢夹层的Al5052-SS 316爆炸复合层具有最高的显微硬度、抗拉强度和剪切强度。  相似文献   

6.
Abstract

Two types of rapidly solidified filler alloys of nominal composition Cu–40Mn–10Ni (C50) and Ni–7Cr–3·2B–4·5Si–3Fe (N82) were used for stainless steel (SS304) brazing joints. The C50 foil is crystalline in nature, whereas N82 foil shows amorphous structure. The SS304/C50/SS304 joint shows solid solution phases at interfacial area, with maximum bond strength of 500 MPa, which qualifies to 80% of base metal strength. Conversely, the SS304/N82/SS304 joint develops brittle CrxBy intermetallic phases, which lowers bond strength to 330 MPa.  相似文献   

7.
In this study, diffusion bonding is used to join rods of Zircaloy-4 with stainless steel 304L. The microstructure of the interface of the dissimilar joints was characterized by SEM-EDS and x-ray diffraction (XRD). It consists of three distinct layers, each separately localized in the modified stainless steel and Zircaloy-4 (Zy-4) matrix. The XRD patterns indicate the presence of intermetallics in the diffusion-bonded joints. Joint corrosion was evaluated by potentiodynamic polarization and some aspects were discussed according to the mixed potential theory. The corrosion results indicate the presence of a local galvanic effect. SEM examination of the corroded joints indicates preferential corrosion around the Zy-4/SS304L interface, probably due to residual stresses and the intermetallic compounds generated during diffusion bonding process at high temperature.  相似文献   

8.
In an effort to reduce the release of fumes containing carcinogenic Cr6+ during arc welding of stainless steel, Cr‐free filler metals for welding of SS304 have been developed. Corrosion studies were carried out on 304L stainless steel samples welded with these Cr‐free consumables. The corrosion properties of gas tungsten arc (GTA) and shielded metal arc (SMA) welds fabricated with Ni? Cu and Ni? Cu? Pd consumables were found to be comparable to those of welds fabricated with SS308L, the standard filler metal used with SS304. Although the breakdown potentials of the welds made using both welding processes were lower than that of the SS308L GTA weld, the repassivation potentials of these welds were much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Accordingly, the Ni? Cu and Ni? Cu? Pd welds were more resistant to crevice corrosion than SS308L welds. The addition of a small amount of Pd improved the corrosion resistance relative to Ni? Cu welds, which is consistent with previous studies from specially‐prepared button samples and bead‐on‐plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni? Cu? Pd filler metal can be a potential replacement for the conventional SS308L filler metal for joining SS304.  相似文献   

9.
The welds of titanium alloys with steels suffer from the brittleness of resulting intermetallic compounds. In present study, we report the feasibility of Ti6Al4V to stainless steel AISI 316L welding through pure copper interlayer carried out by electron beam and pulsed Nd:YAG laser. The nature and the localization of intermetallic phases in these welds have been studied by SEM, EDS, XRD and microhardness measurements. The simplified scenario of weld formation has been proposed in order to understand the mechanism of weld formation and to explain the way local phase content determines the mechanical properties.It can be concluded that the insertion of 500 μm pure copper interlayer allows reducing but not suppressing the formation of brittle Ti–Fe and Ti–Cr-based phases. The local accumulation of Cu–Ti and Cu–Fe–Ti-based phases is less detrimental to the strength of the welds, which makes joining possible. The thickness of brittle regions is reduced due to short lifetime of the melt and compensated by the ductilizing effect of copper. The tensile strength of the welds is limited by brittleness of CuTi2 + FeTi + α-Ti layer situated next to the solid Ti6Al4V.  相似文献   

10.
Direct welding of Mo and stainless steel is exceptionally difficult due to intrinsic brittleness of Mo and the formation of brittle Fe-Mo phases. To explore the feasibility of welding of Mo and stainless steel, the laser offset method was used in this study. Experimental results show that the offset of the laser beam toward stainless steel has a positive effect for the quality of Mo/Fe dissimilar joint. As the laser beam shifts from the Mo side to the stainless steel side, the formation of welding defects and Fe-Mo intermetallic compounds (IMCs) are effectively restricted because of the decrease amount of molten Mo. The decrease of Fe-Mo IMCs contributes to the reduction of hardness in the joints. With an increase of laser offset, the thickness of Fe-Mo IMCs layer decreased, consequently the tensile strength of joints increased first and then decreased in the laser offset range of 0.2–0.5 mm. The highest tensile strength of the joints is 290 MPa at the laser offset of 0.3 mm. All joints failed in the Fe-Mo IMCs layer with brittle fracture mode during tensile tests, indicating the weakest zone of the joint was Fe-Mo IMCs layer. A sound weld of Mo and stainless steel can be obtained if an appropriate thickness of Fe-Mo IMCs layer is produced by adjusting the laser offset.  相似文献   

11.
Joints of Al6061 and Ti6Al4?V alloys with pure Al-particle interlayers were conducted using ultrasonic spot welding. The microstructure, hardness, lap shear strength and fracture energy were measured for different welding energies. With increasing welding energy delivered through the sonotrode, the lap shear strength of the joints increased, reaching about 106?MPa at a welding energy of 1100?J, at which failure occurred in the pull-out mode. In the weld region, the hardness of Al6061 alloy increased with increasing weld energy, whereas the hardness of Ti6Al4?V did not change discernibly. No brittle intermetallic compounds were observed in the joints. Moreover, two simple mechanisms were described for the formation of ultrasonic spot-welded Al–Ti joints with and without the pure Al interlayer.  相似文献   

12.
Abstract

In the present study, diffusion bonding of commercially pure titanium to 304 stainless steel (SS) using a pure Ag interlayer was carried out. It is found that the pure Ag interlayer can effectively block the interdiffusion and interaction between Ti and SS. The resultant joints were composed of Ti substrate, Ti–Ag solid solution, TiAg intermetallic phase, the remnant Ag interlayer and SS. Upon tensile loading, fracture took place through the remnant Ag interlayer, indicating that the TiAg intermetallic phase exhibits no detrimental effect on the strength of the joints. A maximum tensile strength of 421 MPa was achieved, which is notably improved compared with previous results. Furthermore, extensive dimples were observed on the fracture surfaces, clearly indicating that the joints were ductile in nature.  相似文献   

13.
TA15 titanium alloy and 304 stainless steel were joined via a copper interlayer heated by electron beam with a beam deflection towards the stainless steel. Microstructures of the joints were analyzed by optical microscopy, scanning electron microscopy, and X-ray diffraction. The tensile strengths of the joints and the ultramicrohardness of the intermetallic compounds were also measured. The results showed that the joint was formed by three kinds of metallurgical processes. Copper interlayer and TA15 were joined by contact reaction with the reaction products of CuTi, Cu4Ti3, and Cu2Ti. While copper interlayer and 304 stainless steel were joined by fusion and solid state diffusion process. Tensile strength of the joint can reach to 300?MPa, equivalent to 55% of that of 304 stainless steel. Furthermore, the tensile strength was mostly dependent on the volume of the unmelted copper sheet, although the intermetallics layer was the weakest location in the joint.  相似文献   

14.
异种金属的连接可实现节能、经济及减重的目标,成为航空航天、造船、铁路运输等领域的研究热点之一;而铝合金与不锈钢物理化学性能差异明显,成为异种金属中最难实现的连接接头之一。采用惯性摩擦焊接技术进行2219铝合金与不锈钢回转体的连接,分析不同焊接工艺参数下铝钢惯性摩擦焊接接头的显微组织与力学性能。结果表明,惯性摩擦焊接使铝钢接头铝合金一侧形成了细晶区和拉长晶区;EDS结果显示焊接界面处发生了Fe、Al等元素扩散。硬度测试结果表明,在连接界面处-0.6~+0.15 mm范围内硬度值发生了明显的阶跃变化,该区域为受焊接热及变形作用的主要区域,硬度值高于母材。合理焊接工艺下获得的2219铝合金与不锈钢接头拉伸强度为235~300 MPa。铝钢惯性摩擦焊接断口以脆性断裂为主。  相似文献   

15.
This paper focuses on the microstructural and mechanical properties of the friction stir welding (FSW) of 1060 aluminum alloy to a commercially pure copper. A number of FSW experiments were carried out to obtain the optimum mechanical properties by adjusting the rotational speed and welding speed in the range of 750–1500 rpm and 30–375 mm/min, respectively. Various microstructures with different morphologies and properties were observed in the stir zone. The results indicated that Al4Cu9, AlCu and Al2Cu are the main intermetallic compounds formed in the interfacial region. The effect of formation of hard and brittle intermetallic phase at the interface of the joints on the shear strength of the joint is discussed.  相似文献   

16.
The interfacial structure and mechanical properties of Al/Mg joints with and without Zn interlayer by friction stir-induced brazing bond have been investigated. The results revealed that the formation of brittle Al–Mg intermetallics could be effectively suppressed by the addition of Zn interlayer and using appropriate welding parameters, which were replaced by α(Mg)+Mg–Zn and Al–Mg–Zn intermetallic. When rotation speed was further increased, Al–Mg intermetallics were formed again at the interface. The shear strength of Al/Mg joints with Zn interlayer was improved by up to ~25% in comparison with those of the joints without Zn interlayer. A mixture of ductility and cleavage fracture occurred on fracture surfaces of Zn-added joints which was different from the cleavage fracture feature of the direct joints.  相似文献   

17.
Ni-Cu-Pd welding consumables have been recently developed for 300-series austenitic stainless steels such as Type 304L (SS304L) to reduce the amount of Cr(VI) in the welding fumes. In this study, a modified filler metal that replaces Pd with Ru was evaluated. Initial tests conducted on button-melted samples and bead-on-plate welds indicated that Ni-Cu-Ru exhibited good corrosion properties. Actual Ni-Cu-Ru arc welds made on SS304L were successfully produced and the corrosion performance was comparable to or better than that of Ni-Cu-Pd welds. These welds are a suitable replacement for welds made with standard 300-series welding consumables, such as SS308L.  相似文献   

18.
焊丝对工业纯铜和304不锈钢钨极氩弧焊接的影响(英文)   总被引:3,自引:0,他引:3  
采用不同焊丝对工业纯铜和304不锈钢进行钨极氩弧焊接。结果表明,采用铜做焊丝时,焊缝无任何缺陷生成,而采用304不锈钢和Ni-Cu-Fe合金为焊丝材料时,焊缝中有凝固裂纹和未熔化区存在。在最优条件下,焊缝的抗拉强度能达到铜材的96%。焊缝在弯曲到180°下也没有分离、撕裂和断裂等现象发生。这表明铜是一种较好的工业纯铜与304不锈钢GTA焊的焊丝材料。  相似文献   

19.
ABSTRACT

An Au–Ni interlayer was used to improve the joint strength between the Ti-6Al-4V alloy friction welded to the 718 Ni-based alloy. The interlayer was melted and ejected at the interface of the joint during friction welding, showing that frictional heat played a role in brazing of the interlayer. The melted interlayer suppressed the formation of intermetallic compounds between titanium and nickel at the interface. The tensile strength of the joint significantly increased from 460?MPa for direct friction-welded joints, to 698?MPa when the interlayer was added. The mechanism underlying the strength improvement of the friction-welded joint was the unique phenomenon of a combination of brazing of the interlayer and diffusion of solutes in the base metal to the interlayer.  相似文献   

20.
Friction stir welding (FSW) can weld dissimilar metal joints without a thick and brittle intermetallic compound layer at the weld interface. In this study, the dissimilar lap joint of A3003 aluminium alloy and SUS304 stainless steel was successfully welded by FSW, and the joint obtained was tested to examine the properties of fracture toughness and fatigue crack growth rate. Its fracture toughness was different by the directions of crack propagation. The fracture toughness of advancing side (AS) to retreating side (RS) was stronger than that of RS to AS, and that of cryogenic temperature was stronger than that of room temperature. Its fatigue crack growth rate also showed the same tendency as its fracture toughness. These data were compared with the past data and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号