首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic and thermoelectric power (TEP) measurements are used to quantify hydrogen availability, absorption, and desorption in materials for nickel-hydride batteries and hydrogen storage. The effect of the concentration of conduction electrons is introduced and used to investigate hydride properties of these alloys. To investigate hydrogenation properties the calculated average number ofd-band electrons in hydrogen storage material is related to the measured thermoelectric power. Also, a thermodynamic exprssion of equilibrium is applied to demonstrate the relationship between the TEP and the activity of hydrogen for hydrogen adsorption. Magnetization decreases with increasing absorbed hydrogen in the stoichiometric LaNi4.78Sn0.22 alloy. However, magnetization increases with increasing hydrogen content in the nonstoichiometric La0.95Ni4.6Sn0.3 alloy. The TEP for the stoichiometric LaNi4.78Sn0.22 alloy monotonically increases as a function of hydrogen content. However, the TEP of the nonstoichiometric La0.95Ni4.6Sn0.3 alloy decreases as hydrogen content increases.  相似文献   

2.
镁基储氢材料由于价格低廉、储氢量高和安全性好等优点,受到人们的广泛关注。然而较高的吸放氢温度和较慢的动力学性能在一定程度上限制了其在储氢方面的进一步研究和应用。目前,该体系的研究热点主要集中在优化不同的改性方法,目的是得到低成本、大批量、小颗粒和稳定性高的纳米MgH2,并已取得了一定的进展;但要获得能够在环境温度下具有理想热力学性能和实际应用价值的镁基储氢材料,仍面临巨大挑战。本文中,我们总结了镁基合金储氢材料的研究进展,并进一步梳理了文献中关于优化和改变热力学和动力学性能的方法,为获得具有高容量、低成本、吸放氢动力学和热力学性能优异的镁基储氢材料提供更好的实验经验和理论支持。  相似文献   

3.
Ti–V–Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB5 alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti–Zr–V–Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 °C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti–Zr–V–Mn alloy cycling behavior was also examined.  相似文献   

4.
5.
In this paper, the synthesis and solid-state structures of β-alkyl-substituted dipyrrolyldiketone BF2 complexes are discussed; these complexes can function as π-conjugated acyclic anion receptors (“molecular flippers”) and are potential building subunits of anion-responsive π-conjugated oligomers or polymers. Modes of the solid-state assemblies in these complexes determined by performing single-crystal X-ray analysis are found to depend on the lengths of the alkyl chains at the β-positions. A β-methyl-substituted receptor has a highly planar structure, which efficiently forms stacking assemblies in the core π-plane in the solid state, while a β-ethyl-substituted receptor shows no stacking assemblies due to the presence of bulky ethyl moieties, which form only dimeric structures by hydrogen bonding. β-Alkyl-substituted anion receptors can be used not only as monomer units of stimuli-responsive polymeric macromolecules but also as components of solid-state electronic materials.  相似文献   

6.
The aim of the present paper is to report results on hydrogenation behavior of a new composite material, MgHx-BCY10. Rare earth element-doped ABO3 perovskite oxides have been studied for their possibility use in hydrogen storage. Especially, materials based on BaCeO3 are known not only for their proton conductivity in hydrogen but also for the fact that they have higher hydrogen solubility than that of other metal oxides. So, the admixing of perovskite-type oxide in storage materials has to consider the possibility of MgHx leading to sorption kinetics. And, these materials can be new materials for hydrogen storage. This research considers Pressure-Composition-Isothermal behavior according to perovskite-type oxide powder ratio and hydrogen pressure. The effects of added amount of BCY show a temperature of dehydrogenation that has decreased.From the results shown in the P-C-T curves, the MgHx-5wt% BCY composite was evaluated as having a 2.81 wt% maximum hydrogen storage capacity at 623 K. The absorption curves show that the MgHx-10wt% BCY was composite evaluated at a maximum 0.43wt%/s hydrogen absorption rate at 623 K. From the results of the hydrogenation behavior observed, the role of BCY as a catalyst in hydrogen absorption is confirmed.  相似文献   

7.
Fullerenes and their derivatives are promising materials for supercapacitor devices due to their unique nanostructure that combines the reversible redox charge storage with the high surface area. In this article, the reversible redox charge storage of C60, C70, and La@C82 in liquid ammonia solution is reported. An electrochemical analysis of these species using cyclic voltammetry is presented in conjunction with the theoretical interpretation. The relative magnitudes of transfer coefficients, which represent a measure of the symmetry of the energy barrier for oxidation and reduction of the monoanionic species of these fullerenes, suggest that the availability of the surface area permitting delocalization of π electrons is a determining factor of their first reduction potential. The relationship between these transfer coefficients and fullerene geometry also support previous conclusions that the La atom is located within the fullerene cage of La@C82. The electrochemical measurements analyzed were made using a modified three-compartment cell. Advantages associated with this modified cell for analysis of capacitance characteristics of C60, C70, and La@C82 are discussed.  相似文献   

8.
Ball milling of MgCl2 and CaCl2 with NaAlH4 or LiAlH4 can be used for the preparation of magnesium, calcium and lithium–magnesium alanates in mixture with NaCl or LiCl. Using wet chemical separation methods, it was possible to obtain these alanates in nearly pure state. The alanates were characterized by X-ray diffractometry, solid-state 27Al NMR and IR spectroscopy and thermovolumetric (TV) and differential scanning calorimetry (DSC) measurements. Mg(AlH4)2 dissociates thermally in one step to MgH2, Al and hydrogen; at a higher temperature, MgH2 and Al transform to Mg–Al alloy and hydrogen. Thermal dissociations of Ca(AlH4)2 and of LiMg(AlH4)3 (in mixture with NaCl or LiCl) proceeds in several steps, of which the first two can be assigned to the formation of CaH2 and of a MgH2/LiH mixture, respectively, in addition to Al and H2. Possible intermediates of these two steps are CaAlH5 and LiMgAlH6. Higher temperature dissociations include formation of MgH2 (LiH) and Ca–Al alloys from CaH2, CaH2 and Al, respectively. Upon ball milling of MgCl2 or CaCl2 with NaAlH4 or LiAlH4 in the presence of Ti catalysts, only the thermal dissociation products of the expected alanates are obtained. This indicates that dehydrogenation discharge of earth alkali metal alanates can be catalyzed by Ti. According to DSC measurements, the thermodynamic stability of Mg(AlH4)2H = 1.7 kJ/mol) is too low for the purpose of reversible hydrogen storage. Determination of ΔH values for the second, endothermal step of calcium and lithium–magnesium alanate dissociations gave values of around 31.6 and 13.1 kJ/mol, respectively.  相似文献   

9.
The LiBH4-MgH2 system has a high reversible hydrogen storage capacity. However, the hydrogen de/absorption kinetics has to be further enhanced for its practical application. Motivated by the possibility that the metal catalysts facilitating the dissociation and combination of hydrogen molecules and activating Mg-H and B-H bonds, a novel catalyst, ruthenium nanoparticles supported on multiwalled carbon nanotubes (Ru/C) is prepared and its effect on the hydrogen sorption properties of LiBH4-MgH2 systems is investigated. The experimental results show that the Ru/C catalyst is active in reducing the dehydrogenation temperature and enhancing the dehydrogenation kinetics. Furthermore, the reversible capacity is also markedly enhanced under moderate conditions, and the catalytically enhanced hydrogen absorption capacity persists well during three de/rehydrogenation cycles.  相似文献   

10.
《Intermetallics》2006,14(4):361-366
Ml0.8Mg0.2Ni3.2Co0.6−xAlx (x=0–0.6) hydrogen storage alloys were prepared by induction melting and the effect of Al substitution for Co on the structure and hydrogen storage characteristics was investigated. These alloys are confirmed to be composed of LaNi5 as matrix and (LaMg)Ni3 as the secondary phase. The Al substitution leads to an expansion of the unit cell volume of matrix and an enhancement of the stability of the alloy hydrides. The thermodynamic properties such as ΔH and ΔS and the diffusion coefficient of hydrogen in these alloys were also evaluated.  相似文献   

11.
硼是贮氢合金中很有发展前景的一种元素,将硼及其化合物加入金属氢化物-镍电池的合金电极材料中,可有效改善贮氢合金电极的性能。本文主要评述了硼的添加对贮氢合金力学性能、热力学性能和动力学性能的影响。控制硼的含量对改善MH-Ni电池性能有极其重要的意义。  相似文献   

12.
The addition of 5 wt.% of graphite was incorporated into the (LiNH2 + 1.2LiH) hydride system in order to study its effect on the prevention of LiH from hydrolysis/oxidation which leads to the escape of NH3. The composite hydride system was processed by ball milling for 25 h. Thermal behavior in DSC up to 500 °C and isothermal desorption in a Sieverts-type apparatus were carried out. XRD was used to obtain information about phase changes. It is found that after ball milling graphite becomes amorphous. DSC analysis shows that for the mixture ((LiNH2 + 1.2LiH) + 5 wt.% graphite) graphite can prevent or at least substantially reduce the oxidation/hydrolysis of LiH since no melting peak of retained LiNH2 is observed. Both the DSC and Sieverts-type tests show that the addition of graphite increases the apparent activation energy of desorption from the ∼57-58 to ∼85-90 kJ/mol range. On the other hand, the graphite additive increases measurably the desorbed/absorbed capacity of hydrogen at 275, 300 and 325 °C. The ((LiNH2 + 1.2LiH) + 5 wt.% graphite) system is fully reversible desorbing/absorbing ∼5 wt.% H2 at 325 °C in the following reaction: (LiNH2 + LiH ↔ Li2NH + H2). Step-wise pressure-composition-temperature (PCT) tests show that the enthalpy and entropy change of this reversible reaction is −62.4 and −61.0 kJ/mol H2 and 117.8 and 115.8 J/mol K for undoped and 5 wt.% G doped (LiNH2 + 1.2LiH) system, respectively. It shows that within an experimental error there is no measurable effect of graphite additive on the thermodynamic properties. The Van’t Hoff analysis of the obtained thermodynamic data shows that the equilibrium temperature at atmospheric pressure of hydrogen (1 bar H2) is 256.8 and 253.9 °C for the undoped and 5 wt.% G doped (LiNH2 + 1.2 LiH) system ball milled for 25 h, respectively. Such high equilibrium temperatures render it rather obvious that both of these hydride systems cannot be employed for hydrogen desorption/absorption below 100 °C as required by the DOE targets for the automotive hydrogen storage materials.  相似文献   

13.
14.
The present study highlights the advantages of milling NaH/Al under moderate hydrogen pressure as a favourable production step for NaAlH4-based hydrogen storage materials. Firstly, it is demonstrated that NaAlH4 can be obtained by applying a moderate hydrogen pressure (6–12 bar) during milling of NaH and Al with and without the presence of an inexpensive catalyst (TiCl4). The yield of NaAlH4 depends critically on process parameters, such as hydrogen pressure and milling time. A fully converted product is capable of reversible hydrogen storage without any activation procedure. Under optimized conditions, a capacity of 4.2 wt.% was achieved and kinetics in the first desorption are comparable to NaAlH4 doped with TiCl3. Secondly, the synthesis has been optimized towards shorter milling times. By applying a few absorption/desorption cycles to material that was partially converted during milling, almost full reversible storage capacity can be reached. In addition, kinetics is extremely enhanced. For example, such material exhibits an optimum capacity already after two sorption cycles at 100 bar and 125 °C and allows to absorb 80% of the reversible hydrogen content within a few minutes.  相似文献   

15.
16.
金属储氢材料研究概况   总被引:6,自引:0,他引:6  
综述了氢存储研究的重要性和国内外当前金属储氢材料的研究状况,对稀土系、Laves相系、镁系和钛系4大系列及金属配位氢化物系储氢材料当前的研究热点和存在问题进行了详细的介绍,并对未来金属储氢材料的研究工作进行了展望。金属储氢材料可用于电能、机械能、热能和化学能的转换和储存,具有广阔的应用前景。然而到目前为止,那些在室温下容易释放氢的金属氢化物,其可逆吸氢量不超过2%,无法满足实际要求。因此,新型储氢材料的开发任重而道远。  相似文献   

17.
钛催化氢化铝钠的贮氢性能   总被引:2,自引:1,他引:1  
通过加入钛系、锆系催化剂以及碳等添加剂可以显著改善配位氢化物的吸放氢动力学性能,加入催化剂可以使配位氢化物的可逆贮氢量达3.1%~4.2%(质量分数)。采用机械合金化法在NaAlH4中加入钛的化合物作为催化剂,在很大程度上改进了其热力学和动力学性能,可逆吸氢量可达4.0%以上,可逆放氢量也能达3.0%以上。并对试样进行了X射线衍射、扫描电镜以及X射线光电子能谱分析,证明了可逆反应的发生,探讨反应的机理。  相似文献   

18.
《Scripta materialia》2001,44(8-9):1649-1654
Zr-Cu-Ni-Al belongs to the best glass forming systems known; these glasses are suitable as precursor material for nanocrystalline alloys. For an application as hydrogen storage materials for example it is of great interest to know more about these metastable materials in regard to their environmental properties. Corrosion as studied by a salt spray test or anodic polarization in aqueous solutions exhibit a rather high sensitivity with no significant differences between the amorphous and nanocrystalline state. Hydrogen charging was performed electrochemically in a glycerine-phosphoric acid electrolyte. In Zr-Cu-Ni-Al alloys absorption kinetics and storage capacity were found to be very similar for the amorphous and the nanocrystalline phase. In the nanocrystalline alloy consisting mainly of a fcc (big cube) phase with a NiTi2 type structure a hydrogen induced amorphization was observed. Oxidation of metastable Zr-based materials in air was studied below the glass transition temperature at 360°C by thermogravimetry. Oxidation resistance was found to improve very significantly from the amorphous to the nanocrystalline microstructure. The scales formed on both materials consist mainly of columnar ZrO2 with diameter in the nanometer range; Probably including the other metals as a nanocrystalline solid solution.  相似文献   

19.
LiBH4 was confined into activated charcoal (AC) by melt infiltration method (MI), and its effects on the hydrogen sorption properties were investigated. The N2 adsorption results reveal that melt infiltration method can effectively incorporated LiBH4 into AC. It can maintain the structural integrity of the scaffold and ensure the confinement effect. The nano-confined LiBH4/AC starts to release hydrogen at around 190 °C, which is 160 °C lower than that of pure LiBH4, and reaches a hydrogen desorption capacity of 13.6% at 400 °C. When rehydrogenated under the condition of 6 MPa H2 and 350 °C, it has a reversible hydrogen storage capacity of 6%, while pure LiBH4 shows almost no reversible hydrogen storage capacity under the same condition. Mass spectrometry analysis (MS) results suggest that no diborane or other impurity gases are released in the decomposition process. The apparent activation energy of dehydrogenation of LiBH4 after confinement into AC decreases from 156.0 to 121.1 kJ/mol, which leads to the eminent enhancement of dehydrogenation kinetics of LiBH4.  相似文献   

20.
以机械球磨法制备具有可逆吸放氢性能的NaAlH4-Tm2O3储氢材料体系。利用相同制备方法进一步研究两种不同孔道材料(大孔Al2O3与介孔SiO2)对NaAlH4-Tm2O3体系储氢性能的影响,测试样品的循环吸放氢性能,并对样品吸放氢前后的结构进行表征。结果表明:大孔Al2O3材料的添加并不能明显改善NaAlH4-Tm2O3体系的放氢速率和放氢量,而介孔SiO2的加入使NaAlH4-Tm2O3体系在150℃条件下5 h内的首次放氢量(质量分数)达到4.61%,高于NaAlH4-Tm2O3体系的4.27%,增加了约8.0%。此外,添加介孔SiO2的NaAlH4-Tm2O3体系放氢速率也有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号