首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel high-speed dry electrical discharge machining (EDM) method was proposed in this study. Using this method, the material can be rapidly melted by extremely high discharge energy and flushed out of the discharge gap by high-pressure and high-speed air flow. The material removal rate (MRR) of dry EDM was significantly improved by the proposed method. The MRR of dry EDM is usually in tens mm3/min, whereas the MRR of the proposed method can be as high as 5162 mm3/min, which improves the MRR by 2nd to 3rd order of magnitude. Investigation was conducted systemically. The influences of work piece polarity, discharge current, pulse duration time, gas pressure, and electrode rotation speed on machining performance were studied. The machining mechanism of this method was thoroughly analyzed. Moreover, the re-solidified layer, surface morphology, elementary composition, and phase of AISI 304 stainless steel for high-speed dry EDM were also investigated. Theoretical and technical foundations were laid for the industry application of dry EDM.  相似文献   

2.
A versatile process of electrical discharge machining (EDM) using magnetic force assisted standard EDM machine has been developed. The effects of magnetic force on EDM machining characteristics were explored. Moreover, this work adopted an L18 orthogonal array based on Taguchi method to conduct a series of experiments, and statistically evaluated the experimental data by analysis of variance (ANOVA). The main machining parameters such as machining polarity (P), peak current (Ip), pulse duration (τp), high-voltage auxiliary current (IH), no-load voltage (V) and servo reference voltage (Sv) were chosen to determine the EDM machining characteristics such as material removal rate (MRR) and surface roughness (SR). The benefits of magnetic force assisted EDM were confirmed from the analysis of discharge waveforms and from the micrograph observation of surface integrity. The experimental results show that the magnetic force assisted EDM has a higher MRR, a lower relative electrode wear ratio (REWR), and a smaller SR as compared with standard EDM. In addition, the significant machining parameters, and the optimal combination levels of machining parameters associated with MRR as well as SR were also drawn. Moreover, the contribution for expelling machining debris using the magnetic force assisted EDM would be proven to attain a high efficiency and high quality of surface integrity to meet the demand of modern industrial applications.  相似文献   

3.
Technologies for machining advanced insulating ceramics are demanded in many industrial fields. Recently, several insulating ceramics, such as Si3N4, SiC and ZrO2, have been successfully machined by electrical discharge machining (EDM). As unstable discharges occur during the machining of Al2O3 ceramics, inferior machining properties have been obtained. The formation mechanism of the electrical conductive layer on the EDMed surface is much different as compared to other ceramics. In addition to this, the electrically conductive layers are not formed sufficiently to adhere to the EDMed workpiece surface and keep a stable and continuous discharge generation on the ceramics. Graphite is widely used as electrode material in EDM. It is expected that carbon from graphite electrode implant and generate a conductive layer. Copper, graphite (Poco EDM-3) and copper-infiltrated-graphite (Poco EDM-C3) electrodes were used to compare the effects of generation of a conductive layer on alumina corresponding to EDM properties. The electrical discharge machining of 95% pure alumina shows that the EDM-C3 performs very well, giving significantly higher material removal rate (MRR) and lower electrode wear ratio than the EDM-3 and copper electrodes. The value of MRR was found to increase by 60% for EDM-3 with positive electrode polarity. As for EDM-C3, MRR was increased by 80% under the same condition. When the results were investigated with energy dispersive spectroscopy (EDS), no element of copper was observed on the conductive layer with both EDM-3 and EDM-C3. However, surface resistivity of a conductive layer created with EDM-C3 is less than with EDM-3. Surface roughness was improved to 25 μm with positive polarity of EDM-C3.  相似文献   

4.
超声振动辅助气中放电加工技术避免了常用的煤油等工作液作为介质带来的环境污染问题,具有工作环境清洁、适用范围广、加工效率高、工具电极简单等优点。实验研究了电压、脉冲宽度、峰值电流、超声振幅及气体介质压力等参数对加工效率、工件表面粗糙度及电极损耗的影响.并对试验结果进行了分析。  相似文献   

5.
This study focuses on using ultrasonic to improve the efficiency in electrical discharge machining (EDM) in gas medium. The new method is referred to as ultrasonic-assisted electrical discharge machining (UEDM). In the process of UEDM in gas, the tool electrode is a thin-walled pipe, the high-pressure gas medium is applied from inside, and the ultrasonic actuation is applied onto the workpiece. In our experiment, the workpiece material is AISI 1045 steel and the electrode material is copper. The experiment results indicate that (a) the Material Removal Rate (MRR) is increased with respect to the increase of the open voltage, the pulse duration, the amplitude of ultrasonic actuation, the discharge current, and the decrease of the wall thickness of electrode pipe; and (b) the surface roughness is increased with respect to the increase of the open voltage, the pulse duration, and the discharge current. Based on experimental results, a theoretical model to estimate the MRR and the surface roughness is developed.  相似文献   

6.
Cupronickel was used as the electrode material to fabricate microstructures on polycrystalline diamond by electrical discharge machining (EDM). The electrodes were shaped into tiny rotary wheels driven by the flow of EDM fluid. Results showed that material removal rate was improved by a factor of five compared to conventional electrode materials. Raman spectroscopy and energy dispersive X-ray spectroscopy indicated that graphitization of diamond and diffusion-based chemical reactions between nickel and diamond dominated the EDM process. Effects of electrode rotation rate and discharge energy on the EDM characteristics were clarified. High form accuracy (∼0.5 μm/1 mm) and low surface roughness (∼0.1 μm Ra) were obtained.  相似文献   

7.
A novel compound machining of titanium alloy (Ti6Al4V) by super high speed electrical discharge machining (EDM) milling and arc machining was proposed in this paper. The power supply consisted of a pulse generator and a DC power source which were isolated from each other. A rotating pipe graphite electrode was connected to the negative pole of the power supply. The plasma channel was able to deionize, and maximum material removal rate (MRR) reached 21,494 mm3/min with a relative electrode wear ratio (REWR) of 1.7% because of high current and efficient flushing. Compared with traditional EDM, the compound machining achieved a significantly higher MRR but a similar REWR. To investigate the characteristics of the compound machining, the effects of electrode polarity, peak voltage, peak current, and flushing pressure on the performance of the process, including its MRR, REWR, and radius of overcut (ROC), were determined. In addition, scanning electron microscopy, X-ray diffraction, and microhardness analysis were conducted. Result shows that the proposed method can machine difficult-to-machine materials efficiently.  相似文献   

8.
提出了振动辅助液中喷气电火花加工方法。该方法通过工件机械振动改善了极间的放电状态,降低了短路率。通过实验研究了机械振动的频率和振幅对液中喷气电火花加工性能的影响,研究了振动辅助作用下电加工参数、气体压力、工具电极转速对加工性能的影响。结果表明,工件的机械振动可有效提高液中喷气电火花加工的材料去除率,改善加工表面质量,而电极损耗几乎为零。  相似文献   

9.
This study proposes a novel combined process that integrates electrical discharge machining (EDM) and ultrasonic machining (USM) to investigate the machining performance and surface modification on Al–Zn–Mg alloy. In the experiment, TiC particles were added into the dielectric to explore the influence of the combined process on the material removal rate (MRR), the relative electrode wear ratio (REWR), the surface roughness and the expansion of the machined hole. The elemental distributions of titanium and carbon on the cross-section were quantitatively determined using an electron probe micro-analyzer (EPMA). Microhardness and wear resistance tests were conducted to evaluate the modifications on the machined surface caused by the combined process. The experimental results show that the combined process was associated with improved machining performance. The combination of EDM with USM yielded an alloyed layer that improved the hardness and wear resistance of the machined surface.  相似文献   

10.
Electrical discharge machining of Ti6Al4V with a bundled electrode   总被引:1,自引:0,他引:1  
The aim of this study is to investigate an efficient Ti6Al4V electrical discharge machining (EDM) process with a bundled die-sinking electrode. The feasibility of machining Ti6Al4V with a bundled electrode was studied and its effect on EDM performance was compared experimentally using a solid die-sinking electrode. The simulation results explain the high performance of the EDM process with a bundled electrode by through the use of multi-hole inner flushing to efficiently remove molten material from the inter-electrode gap and through the improved ability to apply a higher peak current. A 3-factor, 3-level experimental design was used to study the relationships between 2 machining performance parameters (material removal rate: MRR, tool wear ratio: TWR) and 3 machining parameters (fluid flow rate, peak current and pulse duration). The main effects and influences of the 2-factor interactions of these parameters on the performances of the EDM process with the bundled electrode are discussed.  相似文献   

11.
The study investigated the feasibility of modifying the surface of Al–Zn–Mg alloy by a combined process of electric discharge machining (EDM) with ball burnish machining (BBM). A novel process that integrates EDM and BBM is also developed to conduct experiments on an electric discharge machine. Machining parameters of the combined process, including machining polarity, peak current, power supply voltage, and the protruding of ZrO2, are chosen to determine their effects on material removal rate, surface roughness and the improvement ratio of surface roughness. In addition, the extent to which the combined process affects surface modification is also evaluated by microhardness and corrosion resistance tests. Experimental results indicate that the combined process of EDM with BBM can effectively improve the surface roughness to obtain a fine-finishing and flat surface. The micropores and cracks caused from EDM are eliminated during the process as well. Furthermore, such a process can reinforce and increase the corrosion resistance of the machined surface after machining.  相似文献   

12.
The gap conditions of electrical discharge machining (EDM) would significantly affect the stability of machining progress. Thus, the machining performance would be improved by expelling debris from the machining gap fast and easily. In this investigation, magnetic force was added to a conventional EDM machine to form a novel process of magnetic force-assisted EDM. The beneficial effects of this process were evaluated. The main machining parameters such as peak current and pulse duration were chosen to determine the effects on the machining characteristics in terms of material removal rate (MRR), electrode wear rate (EWR), and surface roughness. The surface integrity was also explored by a scanning electron microscope (SEM) to evaluate the effects of the magnetic force-assisted EDM. As the experimental results suggested that the magnetic force-assisted EDM facilitated the process stability. Moreover, a pertinent EDM process with high efficiency and high quality of machined surface could be accomplished to satisfy modern industrial applications.  相似文献   

13.
The present work investigates the machining characteristics of EN-8 steel with copper as a tool electrode during rotary electrical discharge machining process. The empirical models for prediction of output parameters have been developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Three independent input parameters of the model viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Analysis of the results, by using Taguchi's recommended signal–noise ratio formulae and ANOVA, has been conducted to identify the significant parameters and their degree of contribution in the process output. Analyzed results shows that peak current and pulse on time are the most significant and significant parameters for MRR and EWR, respectively. But peak current and electrode rotation become the most significant and significant parameters for SR, respectively. Experimental results further revealed that maximizing the MRR while minimizing EWR and improving the surface roughness, cannot be achieved simultaneously at a particular combination of control parameters setting. In addition, the predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results.  相似文献   

14.
A study of EDM and ECM/ECM-lapping complex machining technology   总被引:1,自引:0,他引:1  
EDM (electrodischarge machining) and ECM (electrochemical machining)/ECM-lapping complex machining is investigated in this paper. First, EDM shaping and ECM finishing technology are investigated. These processes are carried out in sequence on the same machine tool with the same electrode (copper) and the same machining liquid (water). Two types of EDM and ECM complex machining are investigated. One is with a formed electrode, and the other is with simple-shape electrode scanning. The complex machining with electrode scanning is applied to produce small and various-shaped components without making a formed electrode. The EDM surface of 1 μm Ra is improved to 0.2 μm Ra by applying ECM. Second, in order to get a smoother surface, a new EDM and ECM-lapping complex machining technology is developed. The surface roughness of a machined hole is improved to 0.07 μm Ra by applying 2 min of ECM lapping. The surface finishing of a hole shape is demonstrated with the complex machining technology.  相似文献   

15.
提出了一种超高效电火花电孤复合铣削镍基高温合金Ineonel718的加工方法.构建了一种新型大功率电源,主要由高压脉冲电源和低压大功率直流电源组成。在冲液和电极旋转的作用下得到了非连续电弧,材料去除率可达13421mm3/min,相对电极损耗率可达1.71%。进行了复合加工和电火花加工的对比实验研究,分析了电极转速对材料去除率和相对电极损耗率的影响,并对加工表面特性进行了研究。  相似文献   

16.
Electrode materials for electrical discharge machining (EDM) are usually graphite, copper and copper alloys because these materials have high melting temperature, and excellent electrical and thermal conductivity. The electrodes made by using powder metallurgy technology from special powders have been used to modify EDM surfaces in recent years, to improve wear and corrosion resistance. However, electrodes are normally fabricated at high temperatures and pressures, such that fabrication is expensive. This paper proposes a new method of blending the copper powders contained resin with chromium powders to form tool electrodes. Such electrodes are made at low pressure (20 MPa) and temperature (200 °C) in a hot mounting machine. The results showed that using such electrodes facilitated the formation of a modified surface layer on the work piece after EDM, with remarkable corrosion resistant properties. The optimal mixing ratio, appropriate pressure, and proper machining parameters (such as polarity, peak current, and pulse duration) were used to investigate the effect of the material removal rate (MRR), electrode wear rate (EWR), surface roughness, and thickness of the recast layer on the usability of these electrodes. According to the experimental results, a mixing ratio of Cu–0wt%Cr and a sinter pressure of 20 MPa obtained an excellent MRR. Moreover, this work also reveals that the composite electrodes obtained a higher MRR than Cu metal electrodes; the recast layer was thinner and fewer cracks were present on the machined surface. Furthermore, the Cr elements in the composite electrode migrated to the work piece, resulting in good corrosion resistance of the machined surface after EDM.  相似文献   

17.
Dry electric discharge machining (EDM) is an environment-friendly modification of the oil EDM process in which liquid dielectric is replaced by a gaseous medium. In the current work, parametric analysis of the process has been performed with tubular copper tool electrode and mild steel workpiece. Experiments have been conducted using air as the dielectric medium to study the effect of gap voltage, discharge current, pulse-on time, duty factor, air pressure and spindle speed on material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). First, a set of exploratory experiments has been performed to identify the optimum tool design and to select input parameters and their levels for later stage experiments. Empirical models for MRR, Ra and TWR have then been developed by performing a designed experiment based on the central composite design of experiments. Response surface analysis has been done using the developed models. Analysis of variance (ANOVA) tests were performed to identify the significant parameters. Current, duty factor, air pressure and spindle speed were found to have significant effects on MRR and Ra. However, TWR was found to be very small and independent of the input parameters.  相似文献   

18.
Electro-chemical spark machining (ECSM) is an innovative hybrid machining process, which combines the features of the electro-chemical machining (ECM) and electrodischarge machining (EDM). Unlike ECM and EDM, ECSM is capable of machining electrically non-conducting materials. This paper attempts to develop a thermal model for the calculation of material removal rate (MRR) during ECSM. First, temperature distribution within zone of influence of single spark is obtained with the application of finite element method (FEM). The nodal temperatures are further post processed for estimating MRR. The developed FEM based thermal model is found to be in the range of accuracy with the experimental results. Further the parametric studies are carried out for different parameters like electrolyte concentration, duty factor and energy partition. The increase in MRR is found to increase with increase in electrolyte concentration due to ECSM of soda lime glass workpiece material. Also, the change in the value of MRR for soda lime glass with concentration is found to be more than that of alumina. MRR is found to increase with increase in duty factor and energy partition for both soda lime glass and alumina workpiece material.  相似文献   

19.
压印模具表面织构电火花成形工艺参数的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在石墨电极表面制备了直径分别为ø100、ø200和ø300 μm且具有规则形貌的圆形微凹坑阵列,并使用该电极在45钢表面利用电火花成形工艺(Electrical discharge machining,EDM)制备出微凸起阵列压印模具,研究了加工电流对其表面性能的影响。采用超景深显微镜和扫描电镜对经电火花加工处理后的石墨电极和45钢试样的表面形貌进行了分析,同时采用洛氏硬度计、粗糙度测试仪和精度为0.01 mg的电子天平秤等设备对45钢表面微凸起阵列进行了检测,并讨论了加工电流对45钢的材料去除率(Material removal rate,MRR)和石墨电极的电极耗损率(Electrode wear rate,EWR)之间的影响规律。结果表明,电火花反刻原理可以在45钢表面形成尺寸相对应的微凸起阵列形貌,并得到较高的表面显微硬度和表面粗糙度值,随着电火花加工电流的增大而增大,其中,ø200 μm微凸起试样得到了最大显微硬度,为34 HRC,同时,ø300 μm微凸起试样得到了最大表面粗糙度值12.56 μm。此外,当试样微凹坑或微凸起直径一定时,随着加工电流的增大,MRR和EWR值也会随之增大。  相似文献   

20.
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号