共查询到19条相似文献,搜索用时 62 毫秒
1.
《计算机测量与控制》2014,(4)
针对复杂背景下,尤其是当光照条件发生变化以及目标发生遮挡时容易导致跟踪失败的问题,提出了一种基于自适应多特征融合的粒子滤波目标跟踪算法;该算法将RGB颜色直方图和LBP纹理直方图融合起来建立目标参考模型,并且引入Sigmoid函数动态调整两类子特征粒子的权重;仿真结果表明,该算法能在复杂背景下自适应调整两种子特征权重,以克服其中一种特征失效导致的跟踪失败,而且有效地避免了使用单一特征建模的缺点,能够实现更加准确的跟踪。 相似文献
2.
3.
基于颜色特征与SIFT特征自适应融合的粒子滤波跟踪算法 总被引:1,自引:0,他引:1
针对序列图像中的运动目标在跟踪过程中发生运动模糊以及部分遮挡的问题进行了研究, 提出一种将改进的颜色直方图特征模型与尺度不变特征(SIFT)模型相融合的粒子滤波跟踪算法。采用基于模糊逻辑的方法, 根据当前跟踪环境自适应调节两种特征信息的权重, 从而实现特征信息间的融合, 提高描述目标观测的可靠性。实验结果证明, 该算法优于传统的单特征或采用固定权值的多特征目标跟踪算法。 相似文献
4.
基于梯度方向直方图特征的运动目标跟踪算法在遇到目标遮挡或运动过快时容易丢失目标,基于粒子滤波跟踪算法虽有较强的抗遮挡能力,但存在着计算量大、实时性差等问题.针对这些情况,提出一种融合的跟踪方法:正常情况下基于目标梯度方向直方图特征跟踪目标,当候选目标相似度小于设定阈值时,自动切换到粒子滤波跟踪算法.实验结果显示本算法有效地解决了目标遮挡或运动过快时的丢失问题,同时减轻了粒子的退化现象,提高了算法的实时性,并在图像对比度较低情况下能较好的跟踪目标. 相似文献
5.
提出了一种改进的粒子滤波算法,在遮挡情况下,能鲁棒地跟踪运动目标.该方法是把改进的颜色直方图结合到粒子滤波的观测模型中,并提出了一种判断目标遮挡的分块检测遮挡的方法.首先对传统的以核函数赋权值的方法进行改进,把目标中心附近的像素都赋予最大的权值,目标的边缘由于遮挡等原因采用指数分布赋权值;在遮挡检测时,提出了把跟踪窗分为左右两个子部分,分别计算相似性度量的方法,提高了遮挡检测的实时性和准确性;同时,该算法对旋转和尺寸的变化具有鲁棒性.实验结果表明,与基本的粒子滤波算法相比,提出的新算法能更好的处理目标跟踪中的遮挡问题. 相似文献
6.
空间直方图融合了目标的颜色信息和颜色的空间分布信息,比传统的颜色直方图更具有目标鉴别能力。在基于粒子滤波算法的目标跟踪系统框架中,采用简单的随机漂移模型表示系统状态模型,通过空间直方图的相似度定义来建立系统观测概率模型,提出一种基于空间直方图的粒子滤波目标跟踪算法。实验结果表明,相比传统的基于颜色直方图的粒子滤波算法,提出的算法具有更好的鲁棒性。 相似文献
7.
嵌入卡尔曼预测器的粒子滤波目标跟踪算法* 总被引:1,自引:1,他引:1
针对经典的粒子滤波视频目标跟踪算法进行粒子传播采用随机游走的方式,以及传统颜色直方图无法反映目标空间特征的问题,提出了一种改进的基于颜色的粒子滤波目标跟踪算法。该算法在统计目标二阶颜色直方图的基础上,获得粒子的观察概率密度函数,利用卡尔曼滤波确定粒子动态传播模型中的确定性漂移部分,使粒子状态估计值分布更精确地趋向目标的概率分布,大大提高了粒子的利用效率。实验表明,该改进算法的性能优于经典基于单一颜色特征的粒子滤波算法。 相似文献
8.
人物跟踪技术是目前智能监控系统的核心方法之一,针对人脸运动的非线性非高斯的特点,引入粒子滤波算法来进行运动预测估计,抵抗遮挡干扰。同时,根据人脸结构特点,提出了一种分块颜色直方图,用以描述人脸的特征。并且根据预测精度对预测过程中目标运动速度和过程噪声方差进行自适应更新。实验结果表明,在人脸的旋转,肤色和部分遮挡影响下跟踪精度较高,抵抗光照环境变化,以及人脸大小变化等的鲁棒性较强。 相似文献
9.
10.
11.
针对复杂场景下的目标跟踪问题,提出了一种改进的粒子滤波目标跟踪方法。利用背景加权后的联合直方图描述目标灰度和梯度特征信息,在粒子滤波算法的框架下,设计了一种自适应特征融合观测模型来适应场景的不断变化;同时针对传统粒子滤波算法存在的粒子退化问题,提出了一种基于聚类核函数平滑采样的方法。理论仿真和实际场景的实验结果表明,该算法适应性更强,精度更高,能有效跟踪复杂场景下的运动目标。 相似文献
12.
利用分类概念及粒子滤波理论,提出了一种基于自适应粒子滤波器的物体跟踪算法。将Boosting算法引入粒子滤波器,构建了自适应粒子滤波器,该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的重要信息,进行粒子权值的计算,并在跟踪过程中不断更新特征分类器,从而自适应地更新粒子的权值。实验结果表明,该算法可以根据背景信息的不同自适应地选择特征,对于存在遮挡、形变及背景干扰等情况,依然可以很好地对目标进行稳定跟踪。 相似文献
13.
基于粒子滤波的小波特征跟踪方法研究 总被引:5,自引:0,他引:5
该文提出了基于粒子滤波的小波特征跟踪方法。粒子滤波基于蒙特卡罗模拟方法来实现递推贝叶斯滤波,是一种实用的后验概率求解方法。文中研究了目标的Gabor小波网络表示,用一定数量的小波构成一个集合来表示目标特征,各小波的参数由优化方法来确定。构建了基于粒子滤波的跟踪框架,每个粒子表示一种Gabor小波网络的可能形式,并计算与当前图像的相似度。粒子权值与相似度成正比,目标状态的后验概率由粒子加权表示。与传统的“峰值”跟踪方法不同,粒子滤波具有“多峰”的跟踪形式。并结合对光照、噪声不敏感的小波表示形式,具有较强的抗局部遮挡能力。 相似文献
14.
针对复杂环境中非线性运动目标跟踪,单一特征无法满足对目标的准确描述,造成不能准确跟踪的问题,提出了一种基于粒子滤波与多种特征自适应融合的跟踪方法.该方法先对目标区域提取轮廓方向分布与颜色分布。根据自适应规则融合后,然后与粒子滤波理论相结合,实现对各种复杂环境中视频运动目标的有效跟踪.同时,通过使用CUDA(ComputeUnifiedDevicemchitecture)加速,实现了目标跟踪的实时性.实验结果表明,该方法可对非线性、非高斯的运动目标进行有效的跟踪,对目标的遮挡与暂时消失,背景焦距的拉伸与背景颜色的变换,有很强的鲁棒性和实时性. 相似文献
15.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。 相似文献
16.
针对传统的多特征融合粒子滤波跟踪算法计算量大、不利于实时性、人群拥挤遮挡时容易出现跟踪匹配错误等情况,提出了基于方向矢量的多特征融合粒子滤波跟踪算法.该算法首先将人体颜色特征与轮廓特征进行乘性融合和加性融合后相加并加上两者的不确定性的乘积,以便能够根据两种特征的实际贡献率来调节各自在跟踪过程中所占的权重比例,从而提高了跟踪的准确性;其次结合方向矢量,根据先前的跟踪信息来预测运动物体可能运动的范围从而减少了粒子迭代计算量;最后通过动态调节窗口将合并的人体进行分离处理.实验证明,本方法能够在复杂情况下对人体进行实时准确的跟踪. 相似文献
17.
18.
针对视频跟踪中仅利用目标的单特征容易导致跟踪失败的问题,提出一种基于粒子滤波的可见光与红外序列图像相融合的自适应目标跟踪算法;该算法在粒子滤波跟踪算法框架下,根据单一信源运动目标序列图像的品质因子,利用自适应加权融合策略重构双模序列图像的特征选择机制,建立了基于自适应融合算法的系统观测概率模型和状态空间层次采样多特征融合跟踪算法,实现了对双模序列图像的融合以及对运动目标的稳健跟踪;跟踪试验结果表明,该算法可以有效实现对运动目标的稳健、准确跟踪。 相似文献
19.
一种新颖的基于颜色信息的粒子滤波器跟踪算法 总被引:3,自引:0,他引:3
传统的基于直方图的粒子滤波器算法常常需要在准确表达颜色分布和计算效率之间做出妥协,从而影响跟踪算法的性能甚至导致跟踪算法失败.针对这一问题,文中提出一种新颖的基于颜色信息的粒子滤波器跟踪算法.该算法采用自适应剖分颜色空间的概率模型,能够用较少的子空间准确地表达目标的颜色分布.文中进一步提出一种推广的积分图像,通过在该积分图像上进行数组索引操作得到每一个子空间的像素数目、均值向量和协方差矩阵,从而能够快速地计算出颜色模型.然而在CPU上计算积分图像十分耗时,为此文中提出一种基于GPU的并行算法快速计算积分图像.该并行算法在显卡的GPU上创建3个线程网格,分别顺序执行3个Kernel函数,依次完成创建原始积分图像以及对它的行和列执行前缀求和算法的任务.同传统的基于直方图的粒子滤波器算法相比,新算法每帧平均跟踪时间显著减少,同时跟踪准确性和鲁棒性都有较大提高. 相似文献