首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Interleukin-12 (IL-12) induces differentiation of T helper 1 (Th1) cells, primarily through its ability to prime T cells for high interferon-gamma (IFN-gamma) production. We now report that the presence of IL-12 during the first several days of in vitro clonal expansion in limiting dilution cultures of polyclonally stimulated human peripheral blood CD4+ and CD8+ T cells also induces stable priming for high IL-10 production. This effect was demonstrated with T cells from both healthy donors and HIV+ patients. Priming for IL-4 production, which requires IL-4, was maximum in cultures containing both IL-12 and IL-4. IL-4 modestly inhibited the IL-12-induced priming for IFN-gamma, but almost completely suppressed the priming for IL-10 production. A proportion of the clones generated from memory CD45RO+ cells, but not those generated from naive CD45RO- CD4+ T cells, produced some combinations of IFN-gamma, IL-10, and IL-4 even in the absence of IL-12 and IL-4, suggesting in vivo cytokine priming; virtually all CD4+ clones generated from either CD45RO(-) or (+) cells, however, produced high levels of both IFN-gamma and IL-10 when IL-12 was present during expansion. These results indicate that each Th1-type (IFN-gamma) and Th2-type (IL-4 and IL-10) cytokine gene is independently regulated in human T cells and that the dichotomy between T cells with the cytokine production pattern of Th1 and Th2 cells is not due to a direct differentiation-inducing effect of immunoregulatory cytokines, but rather to secondary selective mechanisms. Particular combinations of cytokines induce a predominant generation of T cell clones with anomalous patterns of cytokine production (e.g., IFN-gamma and IL-4 or IFN-gamma and IL-10) that can also be found in a proportion of fresh peripheral blood T cells with "memory" phenotype or clones generated from them and that may identify novel Th subsets with immunoregulatory functions.  相似文献   

3.
Upon primary activation, T helper (Th) cell populations express different cytokines transiently and with different kinetics. Stimulation of naive murine splenic Th cells with the bacterial superantigen Staphylococcus aureus enterotoxin B (SEB) in vitro results in expression of IL-2, IFN-gamma and IL-10 with fast, intermediate and slow kinetics, respectively. This first report of a functional analysis of cells separated alive according to cytokine expression shows that these cytokines are not produced by different Th cell subpopulations, but can be expressed sequentially by individual Th cells. Th cells, activated with SEB for 1 day and isolated according to expression of IL-2, using the cellular affinity matrix technology, upon continued stimulation with SEB later secrete most of the IFN-gamma and IL-10. Likewise, after 2 days of SEB culture, cells expressing IFN-gamma, separated according to specific surface-associated IFN-gamma as detected by magnetofluorescent liposomes, 1 day later secrete IL-10. Thus, individual Th1 cells can contribute to the control of their own IFN-gamma expression by sequential expression of first IL-2, supporting their proliferation, and later IL-10, down-regulating the production of IFN-gamma-inducing monokines and limiting the pro-inflammatory effects of IFN-gamma.  相似文献   

4.
Dendritic cells are the most relevant antigen-presenting cells (APC) for presentation of antigens administered in adjuvant to CD4+ T cells. Upon interaction with antigen-specific T cells, dendritic cells (DC) expressing appropriate peptide-MHC class II complexes secrete IL-12, a cytokine that drives Th1 cell development. To analyze the T cell-mediated regulation of IL-12 secretion by DC, we have examined their capacity to secrete IL-12 in response to stimulation by antigen-specific Th1 and Th2 DO11.10 TCR-transgenic cells. These cells do not differ either in TCR clonotype or CD40 ligand (CD40L) expression. Interaction with antigen-specific Th1, but not Th2 cells, induces IL-12 p40 and p75 secretion by DC. The induction of IL-12 production by Th1 cells does not depend on their IFN-gamma secretion, but requires direct cell-cell contact mediated by peptide/MHC class II-TCR and CD40-CD40L interactions. Th2 cells not only fail to induce IL-12 secretion, but they inhibit its induction by Th1 cells. Unlike stimulation by Th1, inhibition of IL-12 production by Th2 cells is mediated by soluble molecules, as demonstrated by transwell cultures. Among Th2-derived cytokines, IL-10, but not IL-4 inhibit Th1-driven IL-12 secretion. IL-10 produced by Th2 cells appears to be solely responsible for the inhibition of Th1 -induced IL-12 secretion, but it does not account for the failure of Th2 cells to induce IL-12 production by DC. Collectively, these results demonstrate that Th1 cells up-regulate IL-12 production by DC via IFN-gamma-independent cognate interaction, whereas this is inhibited by Th2-derived IL-10. The inhibition of Th1 -induced IL-12 production by Th2 cells with the same antigen specificity represents a novel mechanism driving the polarization of CD4+ T cell responses.  相似文献   

5.
The developmental commitment to a T helper 1 (Th1)- or Th2-type response can significantly influence host immunity to pathogens. Extinction of the IL-12 signaling pathway during early Th2 development provides a mechanism that allows stable phenotype commitment. In this report we demonstrate that extinction of IL-12 signaling in early Th2 cells results from a selective loss of IL-12 receptor (IL-12R) beta 2 subunit expression. To determine the basis for this selective loss, we examined IL-12R beta 2 subunit expression during Th cell development in response to T cell treatment with different cytokines. IL-12R beta 2 is not expressed by naive resting CD4+ T cells, but is induced upon antigen activation through the T cell receptor. Importantly, IL-4 and IFN-gamma were found to significantly modify IL-12 receptor beta 2 expression after T cell activation. IL-4 inhibited IL-12R beta 2 expression leading to the loss of IL-12 signaling, providing an important point of regulation to promote commitment to the Th2 pathway. IFN-gamma treatment of early developing Th2 cells maintained IL-12R beta 2 expression and restored the ability of these cells to functionally respond to IL-12, but did not directly inhibit IL-4 or induce IFN-gamma production. Thus, IFN-gamma may prevent early Th cells from premature commitment to the Th2 pathway. Controlling the expression of the IL-12R beta 2 subunit could be an important therapeutic target for the redirection of ongoing Th cell responses.  相似文献   

6.
Anti-CD4 mAb-induced tolerance to transplanted tissues has been proposed as due to down-regulation of Thl cells by preferential induction of Th2 cytokines, especially IL-4. This study examined the role of CD4+ cells and cytokines in tolerance to fully allogeneic PVG strain heterotopic cardiac allografts induced in naive DA rats by treatment with MRC Ox38, a nondepleting anti-CD4 mAb. All grafts survived >100 days but had a minor mononuclear cell infiltrate that increased mRNA for the Thl cytokines IL-2, IFN-gamma, and TNF-beta, but not for Th2 cytokines IL-4 and IL-6 or the cytolytic molecules perforin and granzyme A. These hosts accepted PVG skin grafts but rejected third-party grafts, which were not blocked by anti-IL-4 mAb. Cells from these tolerant hosts proliferated in MLC and produced IL-2, IFN-gamma, and IL-4 at levels equivalent to naive cells. Unfractionated and CD4+ T cells, but not CD8+ T cells, transferred specific tolerance to irradiated heart grafted hosts and inhibited reconstitution of rejection by cotransferred naive cells. This transfer of tolerance was associated with normal induction of IL-2 and delayed induction of IFN-gamma, but not with increased IL-4 or IL-10 mRNA. Transfer of tolerance was also not inhibited by anti-IL-4 mAb. This study demonstrated that tolerance induced by a nondepleting anti-CD4 mAb is maintained by a CD4+ suppressor T cell that is not associated with preferential induction of Th2 cytokines or the need for IL-4; nor is it associated with an inability to induce Th1 cytokines or anergy.  相似文献   

7.
In addition to their capacity to induce pain, vasodilatation and fever, prostaglandins E (PGE) exert anti-inflammatory activities by inhibiting the release of pro-inflammatory cytokines by macrophages and T cells, and by increasing interleukin (IL)-10 production by macrophages. We here report that PGE2, the major arachidonic acid metabolite released by antigen-presenting cells (APC), primes naive human T cells for enhanced production of anti-inflammatory cytokines and inhibition of pro-inflammatory cytokines. Unfractionated as well as CD45RO- CD31+ sort-purified neonatal CD4 T cells acquire the capacity to produce a large spectrum of cytokines after priming with anti-CD3 and anti-CD28 monoclonal antibodies (mAb), in the absence of both APC and exogenous cytokines. PGE2 primes naive T cells in a dose-dependent fashion for production of high levels of IL-4, IL-10 and IL-13, and very low levels of IL-2, interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, and TNF-beta. PGE2 does not significantly increase IL-4 production in priming cultures, whereas it suppresses IL-2 and IFN-gamma. Addition of a neutralizing mAb to IL-4 receptor in primary cultures, supplemented or not with PGE2, prevents the development of IL-4-producing cells but does not abolish the effects of PGE2 on IL-10 and IL-13 as well as T helper (Th)1-associated cytokines. Addition of exogenous IL-2 in primary cultures does not alter the effects of PGE2 on naive T cell maturation. Thus PGE2 does not act by increasing IL-4 production in priming cultures, and its effects are partly IL-4 independent and largely IL-2 independent. Together with the recent demonstration that PGE2 suppresses IL-12 production, our results strongly suggest that this endogenously produced molecule may play a significant role in Th subset development and that its stable analogs may be considered for the treatment of Th1-mediated inflammatory diseases.  相似文献   

8.
Streptococcal preparation OK-432 is a bacterial immunopotentiator extensively used in Japan for adjuvant cancer therapy. Using a C57BL/6 mouse model, OK-432 was found to induce multiple cytokines including the Th1 polarizing cytokine IL-12. Expression of IL-12 protein by murine splenocytes was restricted to macrophages and B cells and led to high levels of IFN-gamma production from both CD4+ and CD8+ T cells. Of the Th2 cytokines IL-4 and IL-10, only IL-10 protein was detected and originated primarily from the adherent cell population. Its expression was delayed relative to IL-12. A similar pattern of cytokine induction was observed from human PBMCs. OK-432-driven IFN-gamma production was inhibited by anti-IL-12 Ab, anti-IL-2 Ab, anti-TNF-alpha Ab, and anti-IL-2R alpha Ab, suggesting that IFN-gamma production from Th1 cells is induced by the cooperation action of these cytokines through the IL-2R alpha pathway. When compared with another widely used immunopotentiator bacillus Calmette-Guérin (BCG), OK-432 was a stronger IL-12 and IFN-gamma inducer. Furthermore, the mechanism of IFN-gamma induction by OK-432 differed from BCG in that coincident granulocyte-macrophage CSF and IL-1 expression played little to no role. These results suggest that OK-432 is a potent multicytokine inducer, specifically a strong inducer of IL-12, and that OK-432 may exert its antitumor effect by promoting a Th1-dominant state.  相似文献   

9.
OBJECTIVE: To characterize changes of Th1/Th2 cytokine production by peripheral blood mononuclear cells (PBMC) that occur during the course of HIV infection by cytoplasmic cytokine staining on single cell level. DESIGN AND METHODS: Mitogen-stimulated PBMC from 16 healthy donors, 18 HIV-1-infected individuals without AIDS and 14 patients with AIDS were stained intracellularly with fluorescein-labelled MAb against interleukin (IL)-2, IL-4, IL-10 and interferon (IFN)-gamma. Additionally, co-staining of CD4+ T-cell, CD8+ T-cell, natural killer (NK) cell, B-cell and monocytic markers was performed. Fluorescence staining was analysed by three-colour flow-cytometry. RESULTS: A reduced percentage of IL-2 and IFN-gamma (Th1 type)-producing cells among CD4+ T cells from HIV-1-infected individuals could be demonstrated. There was a continuous decrease of IFN-gamma-producing CD4+ T cells in the course of HIV infection and a dramatic reduction of IL-2-expressing cells among CD4+ T cells in patients with AIDS. In contrast to Th1 cytokines, the frequency of Th2 cytokine expressing cells among CD4+ T cells increased in HIV-infected individuals. The maximum frequency of IL-4-expressing cells among CD4+ T cells was seen in HIV-infected individuals without AIDS, whereas the rate of IL-10-producing cells was highest in patients with AIDS. In HIV-infected individuals no significant proportion of Th0 cells expressing both Th1 and Th2 cytokines was detectable. In CD8+ T cells the percentage of IL-2 was expressing cells decreased continuously accompanied by a strong increase of the frequency of IFN-gamma-producing cells. CONCLUSION: The decreased percentage of cells expressing IL-2 and IFN-gamma in conjunction with an increased proportion of IL-4- and IL-10-producing cells among the CD4+ T cells in HIV-1-infected individuals demonstrate a Th1 to Th2 cytokine shift in the course of HIV infection on a single cell level. There was no evidence of a Th1 to Th0 cytokine shift. In addition to the loss of CD4+ T cells in HIV infection, the qualitative changes of Th1/Th2 cytokine expression may serve as a marker for progressive failure of cell-mediated immunity.  相似文献   

10.
11.
12.
Although considerable attention has been paid to the development of cytokine synthesis heterogeneity during memory T cell differentiation, little information is available on how this function is coregulated with homing receptor expression. The development of skin-homing, CD4+ memory T cells in the human provides an excellent model for such investigation, since 1) the skin supports both Th1- and Th2-predominant responses in different settings, and 2) the skin-homing capability of human memory T cells correlates with and appears to depend on expression of the skin-selective homing receptor cutaneous lymphocyte-associated Ag (CLA). In this study, we used multiparameter FACS analysis to examine expression of CLA vs IFN-gamma, IL-4, and IL-2 synthesis capabilities among fresh peripheral blood CD4+ memory T cells, and Th1 vs Th2 memory T cells generated in vitro from purified CD4+ naive precursors by cyclic activation in polarizing culture conditions. Among normal peripheral blood T cells, CLA expression was essentially identical among the IFN-gamma- vs IL-4-producing CD4+ memory subsets, clearly indicating the existence of in vivo mechanisms capable of producing both Th1 vs Th2 skin-homing T cells. In vitro differentiation of naive CD4+ T cells confirmed the independent regulation of CLA and all three cytokines examined, regulation that allowed differential production of IFN-gamma-, IL-4-, and IL-2-producing, CLA+ memory subsets. These studies also 1) demonstrated differences in regulatory factor activity depending on the differentiation status of the responding cell, and 2) revealed CLA expression to be much more rapidly reversible on established memory cells than cytokine synthesis capabilities.  相似文献   

13.
Murine T-helper clones are classified into two distinct subsets (Th1 and Th2) on the basis of their patterns of lymphokine secretion. Th1 clones secrete interleukin-2 (IL-2), tumour necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), whereas Th2 clones secrete IL-4, IL-5 and IL-10 (ref. 1). These subsets are reciprocally regulated by IL-4, IL-10 and IFN-gamma and differentially promote antibody or delayed-type hypersensitivity responses. To evaluate whether IL-4 is required for mounting Th2 responses, we generated IL-4-mutant mice (IL-4-/-) and assessed the cytokine secretion pattern of T cells both from naive and Nippostrongylus brasiliensis infected mice. CD4+ T cells from naive IL-4-/- mice failed to produce Th2-derived cytokines after in vitro stimulation. The levels of Th2 cytokines IL-5, IL-9 and IL-10 from CD4+ T cells obtained after nematode infection were significantly reduced. The reduced IL-5 production in IL-4-/- mice correlated with reduced helminth-induced eosinophilia, which has been shown to be dependent on IL-5 in vivo. We conclude that IL-4 is required for the generation of the Th2-derived cytokines and that immune responses dependent on these cytokines are impaired.  相似文献   

14.
At inflammatory sites, the number of activated bystander T cells exceeds that of Ag-activated T cells. We investigated whether IL-15, a monocyte-derived cytokine that shares several biologic activities with IL-2, may contribute to bystander T cell activation in the absence of IL-2 and triggering Ag. The addition of IL-15 to cocultures of monocytes and T cells stimulates CD4+ but not CD8+ T cells to produce IFN-gamma. IFN-gamma production requires endogenous IL-12, the production of which in turn is dependent upon CD40/CD154 interactions between CD4+ T cells and monocytes. Indeed, non-TCR-activated CD4+ but not CD8+ T cells express significant levels of CD154. IL-15 may enhance IFN-gamma in this system by up-regulating CD40 expression on monocytes and IL-12Rbeta1 expression on CD4+ T cells. Conversely, using neutralizing anti-IL-15 mAb, we show that the ability of IL-12 to augment IFN-gamma secretion is partly mediated by endogenous IL-15. Finally, in the absence of monocytes, a synergistic effect between exogenous IL-12 and IL-15 is necessary to induce IFN-gamma production by purified CD4+ T cells, while IL-15 alone induces T cell proliferation. It is proposed that this codependence between IL-12 and IL-15 for the activation of inflammatory T cells may be involved in chronic inflammatory disorders that are dominated by a Th1 response. In such a response, a self-perpetuating cycle of inflammation is set forth, because IL-15-stimulated CD4+ T cells may activate monocytes to release IL-12 that synergizes with IL-15 to induce IL-12 response and IFN-gamma production.  相似文献   

15.
We have investigated the role of type I IFNs (IFN-alpha and -beta) in human T cell differentiation using anti-CD3 mAb and allogeneic, in vitro-derived dendritic cells (DC) as APCs. DC were very efficient activators of naive CD4+ T cells, providing necessary costimulation and soluble factors to support Th1 differentiation and expansion. Addition of IFN-alphabeta to DC/T cell cultures resulted in induction of T cell IL-10 production and inhibition of IFN-gamma, TNF-alpha, and LT secretion. Diminished T cell IFN-gamma production correlated with IFN-alphabeta-mediated inhibition of the p40 chain of the IL-12 heterodimer secreted by DC. Suppression of p40 IL-12 and IFN-gamma was not due to increased levels of IL-10 in these cultures, and production of IFN-gamma could be restored by exogenous IL-12. These data indicate that type I IFNs inhibit DC p40 IL-12 expression, which is required for development of IFN-gamma-producing CD4+ T cells. Furthermore, when T cells were restimulated without IFN-beta, these cells induced less p40 IL-12 from DC, suggesting that the functional properties of T cells may regulate DC function. Thus, IFN-alphabeta inhibits both IL-12-dependent and independent Th1 cytokine production and provides a mechanism for inhibition of IL-12-mediated immunity in viral infections.  相似文献   

16.
A prominent switch of CD4+ T cells from Th1 to Th2 type response occurs in mice infected with the non-lethal malaria parasite Plasmodium chabaudi chabaudi AS around the time of peak parasitemia. This is reflected by a decrease in IFN-gamma- and an increase in IL-4-producing cells. The peak occurs approximately 9-10 days after infection and is accompanied by anemia. The mechanism behind the switch in Th cell response is poorly understood. We here report on the production of IL-4 from a non-T cell source during P. chabaudi infection in BALB/c mice. Flow cytometric analysis of spleen and peripheral blood leukocytes (PBL) showed a dramatic increase in the percentage of non-B non-T (NBNT) cells 9-23 days after P. chabaudi infection with peak values by day 15 (approximately 30 % of splenocytes and approximately 55 % of PBL being NBNT cells). The expansion of NBNT cells correlated closely with the appearance of a cell type secreting IL-4 and IL-6 following stimulation with IL-3 and/or cross-linking of FcgammaR. Compared to cells from uninfected animals, NBNT cells from P. chabaudi-infected mice were shown to be hyper-responsive to IL-3. The levels of the hematopoietic cytokine IL-3 were elevated in supernatants from unstimulated spleen cell cultures as well as in serum at the same time points at which NBNT cell-derived IL-4 and IL-6 were detected from spleen cultures and PBL. Thus, IL-3-responsive IL-4-producing NBNT cells may provide cytokines supporting the switch from Th1 to a Th2 response which is important for the final clearance of the parasite in P. chabaudi malaria.  相似文献   

17.
IL-4 and IL-13 are cytokines preferentially produced by Th2 cells, and their genes are located in close proximity on human chromosome 5 and mouse chromosome 11. To identify potential regulatory elements that confer Th2-specific expression of IL-4 and IL-13 genes, we constructed a physical map of the IL-13/IL-4 locus and conducted DNase I-hypersensitive (DH) site analysis using Th clones and in vitro-differentiated effector Th cells obtained from TCR transgenic mice. Three DH sites, HSS1, HSS2 and HSS3, were identified within the intergenic region between IL-13 and IL-4 genes. HSS3 was observed both in Th1 and Th2 cells as well as CD4+ naive T cells, while HSS1 and HSS2 were detected exclusively in Th2 cells. The correlation between differentiation into Th2 subtype and the appearance of HSS1 and HSS2 suggests that these regions may play a role in subtype-specific expression of the IL-13/IL-4 locus.  相似文献   

18.
This study addresses the nature of the pathogenic effector T cell in experimental autoimmune uveoretinitis and the effect of different cytokines on these cells in vitro. Lymph node cells of B10.RIII mice immunized with the uveitogenic peptide 161-180 of interphotoreceptor retinoid binding protein were cultured with the peptide with or without IL-12, IL-4, or anti-IL-4. An antigen-specific T cell line was subsequently derived from these cells. Primary cultures of immune lymph node cells stimulated with the peptide proliferated and produced IL-2 and some IL-4, but no IFN-gamma. The addition of recombinant IL-12 resulted in abundant production of IFN-gamma, which was blocked by the addition of IL-4 and was enhanced by anti-IL-4. Only those cultures that produced IFN-gamma in vitro were uveitogenic in vivo. A long-term uveitogenic T cell line, initially derived in the presence of IL-12, produced IFN-gamma and IL-2, but not IL-4, and was CD4+ (Th1-like). Antigen-specific proliferation and IFN-gamma production of the line were enhanced by exogenous IL-4, TGF-beta, IL-2, IL-6, IL-7, and IL-9 and were inhibited by IL-10 and TNF-alpha. Our results provide support for the hypothesis that the uveitogenic effector T cell has a Th1-like phenotype. Furthermore, the data suggest that the effects of the cytokine milieu on fully differentiated Th1 effectors may differ considerably from their effects on less mature stages of antigen-specific T cells.  相似文献   

19.
Prior studies have implicated CD30 as a marker for Th2 cells, but the mechanism that underlies this correlation was unknown. We show here that CD30 was expressed on activated CD4+ T cells in the presence of IL-4. In the absence of endogenously produced IL-4, however, even Th2 lineage cells lost CD30 expression. Thus, CD30 is not an intrinsic marker of Th2 cells, but is inducible by IL-4. CD30 was also found to be down-regulated by IFN-gamma. Committed Th1 effector cells do not express CD30, although differentiating Th1 lineage cells temporarily express CD30. The transient expression of CD30 on differentiating Th1 lineage cells was mainly the result of endogenously produced IL-4 induced by IL-12. Culture of IL-12-primed cells under conditions that reverse the phenotype (Ag plus IL-4) resulted in two cell populations based upon their ability to express CD30. One population responded to IL-4 upon restimulation and became a CD30-positive, Th0-like cell population, while the other remained CD30 negative and synthesized only IFN-gamma. Thus, CD30 expressed on CD4+ T cells reflected the ability of CD4+ T cells to respond to IL-4.  相似文献   

20.
Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) are mutually antagonistic cytokines that stimulate CD4+ T cells to develop into either Th1 or Th2 cells. One feature of Th2 differentiation in mice is the loss of IL-12-induced Jak2 and Stat4 activation, which is accompanied by the inability to produce IFN-gamma in response to IL-12. In this report, we show that freshly isolated human T cells activated with phytohemagglutinin (PHA) in the presence of IL-4 exhibit a greatly diminished response to IL-12, whereas the IL-12 response of T cells activated with PHA plus IFN-gamma is enhanced. Radiolabeled IL-12 binding studies demonstrate that the impairment of T cell IL-12 responsiveness by IL-4 is associated with the down-regulation of high-affinity IL-12 receptor expression. In contrast, the enhancement of IL-12 responsiveness by IFN-gamma is associated with the upregulation of high-affinity IL-12 receptor expression. Through the use of a newly synthesized neutralizing antibody to the low-affinity IL-12 receptor beta subunit (IL-12Rbeta), we show that neither IL-4 nor IFN-gamma affect the expression of IL-12Rbeta, which we determine to be one of at least two low-affinity subunits required for high-affinity IL-12 binding. These findings suggest that IL-4 and IFN-gamma exert opposite effects on T cell IL-12 responsiveness by differentially modulating the expression of low-affinity IL-12 receptor subunits that are distinct from IL-12Rbeta and required, together with IL-12Rbeta, for high-affinity IL-12 binding and IL-12 responsiveness. This provides a basis for understanding the interplay between different cytokines at the level of cytokine receptor expression, and offers insight into one of the mechanisms governing Th1 and Th2 development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号