共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations. 相似文献
2.
According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas-liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation.In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes.In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane.This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants.It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents. 相似文献
3.
In this work, the effects of surface-active contaminants on mass transfer coefficients kLa and kL were studied in two different bubble contactors. The oxygen transfer coefficient, kL, was obtained from the volumetric oxygen transfer coefficient, kLa, since the specific interfacial area, a, could be determined from the fractional gas holdup, ε, and the average bubble diameter, d32. Water at different heights and antifoam solutions of 0.5- were used as working media, under varying gas sparging conditions, in small-scale bubble column and rectangular airlift contactors of 6.7 and capacity, respectively. Both the antifoam concentration and the bubble residence time were shown to control kLa and kL values over a span of almost 400%. A theoretical interpretation is proposed based on modelling the kinetics of single bubble contamination, followed by sudden surface transition from mobile to rigid condition, in accordance with the stagnant cap model. Model results match experimental kL data within ±30%. 相似文献
4.
Mariano Martín Francisco J. Montes Miguel A. Galán 《Chemical engineering science》2007,62(6):1741-1752
Bubble columns are among the most used equipments for gas-liquid mass transfer processes. This equipment's aim is to generate gas dispersions into a liquid phase in order to improve the contact between phases. Bubble coalescence has always been one of their greatest problems, since it reduces the superficial gas-liquid contact area. However, bigger bubbles can oscillate, and these oscillations increase the mass transfer rate by means of modifying the contact time as well as the concentration profiles surrounding the bubble. In the present work, the coupled effect has been studied by means of two-holed sieve plates with diameters of 1.5, 2 and 2.5 mm each, close enough to allow the coalescence and separated enough to avoid it. The results show that although coalescence decreases mass transfer rate from bubbles the deformable bubble generated can, in certain cases, balance the decrease in mass transfer rate due to the reduction in superficial area. This fact can then be used to avoid the harmful effect of coalescence on the mass transfer rate. Empirical and theoretical equations have also been used to explain the phenomena. 相似文献
5.
6.
7.
Chengzhi Tang 《Chemical engineering science》2004,59(3):623-632
Time-dependent gas holdup variation in a two-phase bubble column is reported with air and tap water as the working fluids. The results indicate that time-dependent gas holdup is closely related to the water, whose quality is unsteady and changes, not only during the two-phase flow, but also during idle periods. The significance and characteristics of the time-dependent gas holdup variation are influenced by the bubble column operation mode (cocurrent or semi-batch), the sparger orientation, the superficial gas velocity, and the superficial liquid velocity. It is proposed that a volatile substance (VS), which exists in the water in very small concentrations and inhibits bubble coalescence, evaporates during column operation and results in a time-dependent gas holdup. The influence of bubble column operation mode, sparger orientation, superficial gas velocity, and superficial liquid velocity on the time-dependent gas holdup variation are explained based on their effects on bubble size, bubble contacting frequency and mixing intensity. This work reveals that regular tap water may cause significant reproducibility problems in experimental studies of air-water two-phase flows. 相似文献
8.
Most of available gas-liquid mass transfer data in bubble column have been obtained in aqueous media and in liquid batch conditions, contrary to industrial chemical reactor conditions. This work provides new data more relevant for industrial conditions, including comparison of water and organic media, effects of large liquid and gas velocities, perforated plates and sparger hole diameter.The usual dynamic O2 methods for mass transfer investigation were not convenient in this work (cyclohexane, liquid circulation). Steady-state mass transfer of CO2 in an absorption-desorption loop has been quantified by IR spectrometry. Using a simple RTD characterization, mass transfer efficiency and kLa have been calculated in a wide range of experimental conditions.Due to large column height and gas velocity, mass transfer efficiency is high, ranging between 40% and 90%. kLa values stand between 0.015 and and depend mainly on superficial gas velocity. No significant effects of column design and media have been shown. At last, using both global and local hydrodynamics data, mass transfer connection with hydrodynamics has been investigated through kLa/εG and kLa/a. 相似文献
9.
10.
D. Colombet D. Legendre A. Cockx P. Guiraud F. Risso C. Daniel S. Galinat 《Chemical engineering science》2011,(14):3432
We consider the liquid-side mass transfer coefficient kL in a dense bubble swarm for a wide range of gas volume fraction (0.45%≤αG≤16.5%). The study is performed for an air–water system in a square column. Bubble size, shape and velocity have been measured for different gas flow rates by means of a high speed camera. Gas volume fraction and bubble velocity have also been measured by a dual-tip optical probe. Both of these measurements show that the bubble vertical velocity decreases when increasing αG in agreement with previous investigations. The mass transfer is measured from the time evolution of the dissolved oxygen concentration, which is obtained by the gassing-out method. The mass transfer coefficient is found to be very close to that of a single bubble provided the bubble Reynolds number is based on the average equivalent diameter 〈deq〉 and the vertical slip velocity 〈Vz〉. 相似文献
11.
Xiao Xu Junjie Wang Qiang Yang Lei Wang Hao Lu Honglai Liu Hualin Wang 《中国化学工程学报》2020,28(12):2968-2976
As the scale of residual oil treatment increases and cleaner production improves in China, slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology. The internals development is critical to adapt the long-term stable operation. In this paper, the volumetric mass transfer coefficient, gas holdup and bubble size in a gas–liquid up-flow column are studied with two kinds of internals. The gas holdup and volumetric mass transfer coefficient increase by 120% and 42% when the fractal dimension of bubbles increases from 0.56 to 2.56, respectively. The enhanced mass transfer processing may improve the coke suppression ability in the slurry reactor for residual oil treatment. The results can be useful for the exploration of reacting conditions, scale-up strategies, and oil adaptability. This work is valuable for the design of reactor systems and technological processes. 相似文献
12.
In this paper, a multi-scale approach is followed to study gas-liquid mass transfer in bubble columns. First, a single bubble of equivalent diameter d is considered. Its morphology and its gas to liquid relative velocity are related to the bubble diameter through the use of known correlations. Then, the gas-liquid mass transfer between the bubble and the surrounding liquid is studied theoretically. An equation describing the transport of the transferred species in the viscous boundary layer around the bubble is solved. In a second step, a bubble column of 6-10 m height is studied experimentally. The gas phase in the column is characterized experimentally by means of a gammametric technique. Finally, the two studies are linked, yielding a 1D mathematical model able to predict the gas-liquid mass transfer rate in a bubble column operated in the heterogeneous regime. 相似文献
13.
In this paper, an original direct and non-intrusive technique using Planar Laser Induced Florescence with Inhibition (PLIFI) is proposed to quantify the local mass transfer around a single spherical bubble rising in a quiescent liquid. The new set-up tracks the mass transferred in the bubble wake for a plane perpendicular to the bubble trajectory instead of a parallel plane as in previous works, thus avoiding optical reflection problems. A spherical bubble is formed in a glass column containing fluorescent dye. A camera with a microscopic lens is placed underneath the column to record cross-sections of the transferred oxygen. A high-speed camera is located far from the column to simultaneously record the bubble position, size, shape and velocity. The dissolved gas inhibits the fluorescence so that oxygen concentration fields can be measured. From this, a calculation method is developed to determine mass transfer on the micro-scale. Experimental results are compared to the Sherwood numbers calculated from the Frössling and Higbie models used for fully contaminated and clean spherical bubbles, respectively. Results show that all experimental Sherwood numbers occur between the two models, which gives credence to the measurements. The new technique is then developed for bubble diameters ranging from 0.7 to 2 mm in six hydrodynamic conditions (1<Re<102, 102<Sc<106). 相似文献
14.
An apparatus where individual bubbles are kept stationary in a downward liquid flow was adapted to simultaneously (i) follow mass transfer to/from a single bubble as it inevitably gets contaminated; (ii) follow its shape; and (iii) periodically measure its terminal velocity. This apparatus allows bubbles to be monitored for much longer periods of time than does the monitoring of rising bubbles. Thus, the effect of trace contaminants on bubbles of low solubility gases, like air, may be studied.Experiments were done with air bubbles of 1-5 mm initial equivalent diameter in a water stream. The partial pressure of air in the liquid could be manipulated, allowing bubbles to be either dissolving or kept at an approximately constant diameter.Both drag coefficient and gas-liquid mass transfer results were interpreted in terms of bubble contamination kinetics using a simplified stagnant cap model. Drag coefficient was calculated from stagnant cap size using an adaptation of Sadhal and Johnson's model (J. Fluid Mech. 126 (1983) 237).Gas-liquid mass transfer modelling assumed two mass transfer coefficients, one for the clean front of the bubble, the other for the stagnant cap. Adjusted values of these coefficients are consistent with theoretical predictions from Higbie's and Frössling's equations, respectively. 相似文献
15.
Mariano Martín Francisco J. Montes Miguel A. Galn 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2009,155(1-2):272-284
The complex composition of the liquid media in bubble column reactors makes their understanding and theoretical modelling challenging. In this work we have studied the effect of surface tension and contaminants, salts, on the mass transfer rates from a theoretical point of view, looking for a deeper understanding on the effect of surface active species which usually reduce surface tension and modify bubble surface behaviour. The specific contact area is obtained using a population balance where the effect of the presence of contaminants is addressed by the proper theoretical closures for bubble coalescence efficiency, for partially and fully immobile surfaces, and bubble break-up. Meanwhile, the contribution of contaminants to the liquid-film resistance is implemented as function of the coverage of the surface of the bubbles. It was found that the degree of bubble surface coverage not only affects bubble coalescence but also their break-up. The ion strength defines bubbles stability and the critical Weber number can be predicted as function of ion strength. Furthermore, the mass transfer rates are function of the surface coverage by the electrolytes. The model was able to predict kLa taking into account the fact that the concentration profiles surrounding individual bubbles are not completely developed due to the presence of other bubbles, in agreement with previous results from the literature. 相似文献
16.
The bubble characteristics have been investigated in an air–water bubble column with shallow bed heights. The effect of bed height, location and the presence of solids on the bubble size, bubble rise velocity and overall and sectional gas holdup are studied over a range of superficial gas velocities. Optimal shallow bed operation relies on the combined entrance and exit effects at the distributor and the liquid bed surface. The gas holdup is found to decrease with an increase in H/D ratio but the effect is diminishing at high H/D ratios. A H/D ratio of 2–4 is found to be suitable for shallow bed operation. The presence of solids causes the formation of larger bubbles at the distributor and the effect is diminishing as the gas velocity is increased. 相似文献
17.
Effect of liquid properties on the performance of bubble column reactors with fine pore spargers 总被引:1,自引:0,他引:1
A.A. Mouza 《Chemical engineering science》2005,60(5):1465-1475
This work is a study of the effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Various liquids covering a range of surface tension and viscosity values are employed, while the gas phase is atmospheric air. A fast video technique is used for visual observations and, combined with image processing, is used for gas holdup and bubble size measurements. New data on average gas holdup values, bubble size distributions and Sauter diameters are presented and are consistent with existing physical models on coalescence/breakage. A correlation based on dimensionless groups for the prediction of gas holdup in the homogeneous regime is proposed and found to be in good agreement with available data. 相似文献
18.
Ahmed A. Youssef Mohamed E. Hamed Muthanna H. Al-Dahhan Milorad P. Duduković 《Chemical Engineering Research and Design》2014
The reactor of choice for the Fischer-Tropsch synthesis is a slurry bubble column. One of the few disadvantages of bubble columns is the difficulties associated with their scale-up. The latter is due to complex phases’ interactions and significant back-mixing. 相似文献
19.
J. Enrique Juliá Leonor Hernández Sergio Chiva Antonio Vela 《Chemical engineering science》2007,62(22):6361-6377
In this work a detailed experimental hydrodynamic characterization of a needle sparger rectangular bubble column has been performed. The liquid velocity profiles and bubble plume oscillation frequency have been measured by means of laser Doppler anemometry (LDA), and the bubble velocity map by particle image velocimetry (PIV). In this way, the influence of the superficial gas velocity, liquid height and aeration pattern on the column flow structure was analysed. A highly uniform upward flow structure with down flow near the walls was obtained by means of a full-length aeration pattern. This flow structure was preserved even for high gas fractions values. The partial-length aeration patterns with the aerated zone (defined as the aerated width divided by the column width) larger than 0.7 provide a bubble plume and two pure liquid vortical structures in the column bottom, although they are static in nature. With aerated zones lower than 0.6, an oscillating bubble plume is obtained. A non-dimensional analysis of bubble plume oscillation frequency shows a dependence of bubble plume behaviour with the aerated zone. In this way, two different types of bubble plume oscillations, namely confined bubble plume oscillation and free bubble plume oscillation, are introduced and analysed. 相似文献
20.
Peter Therning 《Chemical engineering science》2005,60(3):717-726
LDA has been used to measure liquid velocities in a small-scale bubble column, internal diameter of 50 mm, packed with glass Raschig rings, 10 and 15 mm. A mixture of benzyl-alcohol and ethyl alcohol was index matched against the packing material. A method to separate the signals from liquid and bubbles was developed. It was found that the axial time-averaged liquid velocity was lower than that obtained in empty bubble columns, and that both the time-averaged liquid velocity and the RMS value of the liquid increased for the larger packing size. 相似文献