首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Gas/solid and catalytic gas phase reactions in CFBs use different operating conditions, with a strict control of the solids residence time and limited back-mixing only essential in the latter applications. Since conversion proceeds with residence time, this residence time is an essential parameter in reactor modelling. To determine the residence time and its distribution (RTD), previous studies used either stimulus response or single tracer particle studies.The experiments of the present research were conducted at ambient conditions and combine both stimulus response and particle tracking measurements. Positron emission particle tracking (PEPT) continuously tracks individual radioactive tracer particles, thus yielding data on particle movement in “real time”, defining particle velocities and population density plots.Pulse tracer injection measurements of the RTD were performed in a 0.1 m I.D. riser. PEPT experiments were performed in a small ( I.D.) riser, using 18F-labelled sand and radish seed. The operating conditions varied from 1 to 10 m/s as superficial velocity, and 25- as solids circulation rate.Experimental results were compared with fittings from several models. Although the model evaluation shows that the residence time distribution (RTD) of the experiments shifts from near plug flow to perfect mixing (when the solids circulation rate decreases), none of the models fits the experimental results over the broad (U,G)-range.The particle slip velocity was found to be considerably below the theoretical value in core/annulus flow (due to cluster formation), but to be equal at high values of the solids circulation rate and superficial gas velocity.The transition from mixed to plug flow was further examined. At velocities near Utr the CFB-regime is either not fully developed and/or mixing occurs even at high solids circulation rates. This indicates the necessity of working at U> approx. ( to have a stable solids circulation, irrespective of the need to operate in either mixed or plug flow mode. At velocities above this limit, plug flow is achieved when the solids circulation rate . Solids back-mixing occurs at lower G and the operating mode can be described by the core/annulus approach. The relative sizes of core and annulus, as well as the downward particle velocity in the annulus (∼Ut) are defined from PEPT measurements.Own and literature data were finally combined in a core/annulus vs. plug flow diagram. These limits of working conditions were developed from experiments at ambient conditions. Since commercial CFB reactors normally operate at a higher temperature and/or pressure, gas properties such as density and viscosity will be different and possibly influence the gas-solid flow and mixing. Further tests at higher temperatures and pressures are needed or scaling laws must be considered. At ambient conditions, reactors requiring pure plug flow must operate at and . If back-mixing is required, as in gas/solid reactors, operation at and is recommended.  相似文献   

2.
Circulating fluidized beds often apply secondary gas injections and diffusers in the riser. These strongly affect the fluid dynamics of the gas-solid flow in the system. This work is performed to study these effects in a cold flow model of an biomass gasifier. It is shown that in the diffuser there is a bulb of the suspension flow, which enhances the internal solids recirculation by a factor of 3.5. Thus, the solids hold-up and the pressure drop in the diffuser are significantly increased. The study on the effect of gas injection confirms that the solids circulation rate is more enhanced by gas injections in the lower part of the riser than in the upper part. From the investigated operating parameters, the gas flow rates and the particle diameter have the strongest effects on solids circulation and mass distribution in the riser. The effect of riser geometry properties, besides the cross-section areas and the total height, was found to be small.  相似文献   

3.
The advantages from a 4-l external-loop inversed fluidized bed airlift bioreactor (EIFBAB) reported by Loh and Liu [2001. Chemical Engineering Science 56, 6171-6176] was synergized with preferential adsorption by granular activated carbon (GAC) for the enhanced cometabolic biotransformation of 4-chlorophenol (4-cp) in the presence of phenol as a growth substrate. This was achieved by incorporating a GAC fluidized bed in the lower part of the riser with the gas sparger relocated above this fluidized bed to avoid the presence of a 3-phase flow in the fluidized bed consequently providing larger gas holdup. Expanded polystyrene beads (EPS) were used as the supporting matrix for immobilizing Pseudomonas putida ATCC 49451, in the downcomer of the bioreactor. The hydrodynamics of the bioreactor system was characterized by studying the effect of the extent of valve opening, under cell-free condition, on gas holdup and liquid circulation velocity at different gas velocities and solids loading (EPS and GAC). The experimental data for gas holdup were modeled using power law correlations, while a Langmuir-Hinshelwood kinetics model was used for the liquid circulation velocity. The bioreactor was tested for batch cometabolic biotransformation of 4-cp in the presence of phenol at various concentration ratios of phenol and 4-cp (ranging from phenol: 4-cp to phenol: 4-cp) at 9% EPS loading and 2.8% (10 g) GAC loading. The 4-cp and phenol biotransformations were achieved successfully in the bioreactor system, which ascertained the feasibility of the bioreactor. Biotransformation of high 4-cp and phenol concentrations, which was oxygen limited, was also effectively achieved by increasing the gas holdup in the riser. This was possible in the current EFBAB system because of the synergistic effect of the GAC fluidized bed, the globe valve and cell immobilization by EPS.  相似文献   

4.
Flow behavior and flow regime transitions were determined in a circulating fluidized bed riser (0.203 m i.d. × 5.9 m high) of FCC particles (, ). A momentum probe was used to measure radial profiles of solids momentum flux at several heights and to distinguish between local net upward and downward flow. In the experimental range covered (; ), the fast fluidization flow regime was observed to coexist with dense suspension upflow (DSU). At a constant gas velocity, net downflow of solids near the wall disappeared towards the bottom of the riser with increasing solids mass flux, with dense suspension upflow achieved where there was no refluxing of solids near the riser wall on a time-average basis. The transition to DSU conditions could be distinguished by means of variations of net solids flow direction at the wall, annulus thickness approaching zero and flattening of the solids holdup versus Gs trend. A new flow regime map is proposed distinguishing the fast fluidization, DSU and dilute pneumatic transport flow regimes.  相似文献   

5.
Fine powders (Geldart's group C) are added to a circulating fluidized bed (CFB) of coarse particles (Geldart's group A) and the solid circulation rate (SCR) is investigated with addition of fine powders of different sizes and different fractions (different hold-ups) to the bed. Experiments were carried out in a CFB of 2 m in height and 0.052 m in diameter, using FCC catalyst particles of as the coarse particles and cohesive aluminum hydroxide powders of 0.5- as the fine powders. The effects of hold-up of fine powders in the bed, fine powders size, and superficial gas velocity on the SCR were investigated.The SCR strongly depended on the hold-up of fine powders of 0.5- in size and noticeably decreased with increasing the hold-up of fine powders under constant gas velocity. This dependency disappeared when the size of fine powders was larger than . Thus, depending on the size of fine powders added to the CFB, two distinct regions for the changes of SCR could be clearly identified.  相似文献   

6.
A method is described to estimate solid mass flow rate based on measurement of pressure drop in horizontal section of circulating fluid bed (CFB). A theoretical model was derived based on momentum balance equation and used to predict the solids flow rate. Several approaches for formulating such models are compared and contrasted. A correlation was developed that predicts the solids flow rate as a function of pressure drop measured in the horizontal section of piping leading from the top of the riser to the cyclone, often referred to as the cross-over. Model validation data was taken from literature data and from steady state, cold flow, CFB tests results of five granular materials with various sizes and densities in which the riser was operated in core-annular and dilute flow regimes. Experimental data were taken from a 0.20 m ID cross-over piping and compared to literature data generated in a 0.10 m ID cross-over pipe. The solids mass flow rate data were taken from statistically designed experiments over a wide range of Froude number , load ratio , Euler number , density ratio , Reynolds number , and Archimedes number . Several correlations were developed and tested to predict the solids mass flux based on measuring pressure drop in the horizontal section of CFB. It was found that load ratio is a linear function of the Euler number and that each of these expressions all worked quite well (R2 > 95%) for the data within the range of conditions from which the coefficients were estimated.  相似文献   

7.
To determine the oxygen mass transfer in clean water in biofilters, a method based on the follow up of the oxygen fraction in the off gas during the oxidation of sulphite in excess has been evaluated and applied to a pilot-scale unit (250 L, superficial gas velocity from 0 to , superficial liquid velocity from 0 to ). Tests performed on a two-phase reactor showed that, without any cobalt addition, standard oxygen transfer efficiencies (SOTE) obtained from the proposed method are not statistically different from those issued from the standardised method. A relationship has been proposed to express SOTE values as a function of the conductivity, and the influence of the gas and liquid velocities on SOTE and kLa has been investigated.  相似文献   

8.
In the transporting square nosed slugging fluidization regime () a bed of polyethylene powder with a low density () and a large particle size distribution () was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A relation was derived for the plug velocity as a function of the gas velocity, solids flux, riser diameter, particle size range and particle and powder properties. The influence of the plug length on the plug velocity, the raining rate of solids onto and from the plugs and the influence of the particle size range on the plug velocity is accounted for.  相似文献   

9.
Successful design and scale-up of Slurry Bubble Column Reactors (SBCRs) require proper understanding of how operating conditions affect their flow behavior. Presently, there is little information on the flow dynamics of solids (e.g., distribution of velocities and turbulent parameters) in slurry systems that are operated at industrially relevant conditions of high pressure, high superficial gas velocities, and high solids loading.Computer Automated Radio Particle Tracking (CARPT) is widely recognized as one of a few techniques that can be reliably used even in highly turbulent and opaque slurry flows. This work utilizes an improved CARPT technique to investigate the effect of reactor pressure (0.1-1 MPa) and superficial gas velocity (0.08-0.45 m/s) on solids phase velocity and shear stress in a pilot scale 0.16 m diameter stainless steel column using an air-water-glass beads () system. The solids axial velocity and shear stress were found to increase noticeably with pressure and superficial gas velocity in the churn turbulent flow regime.  相似文献   

10.
高颗粒通量循环流化床的构型作用   总被引:1,自引:1,他引:0       下载免费PDF全文
In order to achieve high solids circulation rate (Gs),an idea of coupling a moving bed to the bottom section of the riser of a circulating fluidized bed (CFB) was proposed and tested.The results from the preliminary study demonstrated that the solids circulation rate in the new-structure bed approached 370 kg·m-2·s-1 at superficial gas velocities around 10.5 m·s-1 for sand particles with an average Sauter mean size of 378 μm.This study was devoted to further justifying the effects of the coupled moving bed by performing comparative studies in two CFBs with conventional configurations.It was shown that the pressure at the riser bottom and the realized solid circulation rate were only about 15 kPa and 230 kg·m-2·s-1 in the two conventionally configured CFBs,obviously lower than 25 kPa and 370 kg·m-2·s-1 in the moving bed coupled CFB.These verified that the coupled moving bed increased the force driving particles form the particle recycling side into the riser.The study further tested the effect of a few specially designed riser exit configurations,revealing that a smooth riser exit could facilitate solids circulation to increase the solids circulation rate.  相似文献   

11.
A new correlation for estimating local voidage in CFB risers is provided based on data obtained in a riser of diameter 76 mm and height 6 m using FCC particles at superficial gas velocities between 4 and 8 m/s and solids circulation fluxes up to 425 kg/m2s. This equation also works well for a wide range of operating conditions and risers of larger size and for other particles. The correlation appears to have broader applicability than previous ones. It is especially useful for estimating the local voidage in the dense zone of CFB risers and CFB risers operating under the dense suspension upflow regime where few experimental data are currently available.  相似文献   

12.
CFD simulation of gas solid flow in FCC strippers   总被引:3,自引:0,他引:3  
In this paper, the hydrodynamic characteristics in bubbling fluidized beds (FCC Strippers) were simulated by using computational fluid dynamics (CFD) code (Fluent 6.2.16). The modified Gidaspow drag model based on the effective mean diameter of the particle clusters predicted the expected bubbling fluidization behavior and bed expansion. Compared with the bed densities of in the empty-cylinder stripper, bed densities in the V-baffled stripper were at the superficial gas velocity of 0.10-0.20 m/s. The overall trend of the time-averaged bed density at various superficial gas velocities were in agreement with the experimental data. The results illustrated that internal baffles had an important effect on the fluidization hydrodynamics. Internal baffles improved break-up and redistribution of bubbles and intensified the gas-solid contact. The simulation results also indicated that appropriate modification of the internal configuration eliminated the dead flow region in the strippers, and enhanced the gas-solid mixing remarkably, showing benefit for the mass and heat transfer in the fluidized bed.  相似文献   

13.
The influence of the channel radius on the mass transfer in rectangular meandering microchannels (width and height of ) has been investigated for gas-liquid flow. Laser induced velocimetry measurements have been compared with theoretical results. The symmetrical velocity profile, known from the straight channel, was found to change to an asymmetrical one for the meandering channel configuration. The changes in the secondary velocity profile lead to an enhanced radial mass transfer inside the liquid slug, resulting in a reduced mixing length. In the investigated experimental range (superficial gas velocity and superficial liquid velocity ) the mixing time was reduced eightfold solely due to changes in channel geometry. An experimental study on the liquid slug lengths, the pressure drop and their relation to the mass transfer have also been performed. Experimental results were validated by a simulation done in Comsol Multiphysics®. To obtain information for higher velocity rates, simulations were performed up to . These velocity variations in the simulation indicate the occurrence of a different flow pattern for high velocities, leading to further mass transfer intensification.  相似文献   

14.
采用5光纤速度探头对f100mm?5.1m循环床提升管8个高度截面上11个径向位置的局部颗粒速度进行了实验测试,并采用径向不均匀指数(RNI)对颗粒速度径向分布的不均匀性及其沿轴向的变化进行了定量描述。研究结果表明:在高气速、高颗粒循环量操作时,操作条件对颗粒上升速度和下降速度的径向分布的影响在加速段和充分发展段呈现出不同的规律;颗粒上升速度和下降速度沿轴向的变化在核心区和边壁区也表现出不同的趋势。当颗粒循环速率大于200 kgm-2s-1时,颗粒的加速段长度大大延长,以至于大于提升管的高度(15.1m)。颗粒速度径向分布的不均匀性沿轴向是逐渐增大的,并且与截面平均颗粒速度存在很强的相关性。  相似文献   

15.
The present work focuses on developing a new comprehensive correlation for better prediction of the solids concentration in the fully developed region of co-current upward gas-solid flow in circulating fluidized bed (CFB) risers. Systematic experiments were carried out in two risers (15.1 m and 10.5 m high with the same 0.1 m i.d.) with FCC and sand particles. The results obtained from about 200 sets of operating conditions show that the average solids concentration in the fully developed region is more than just a function of the corresponding terminal solids concentration, as most previous correlations are based on. Operating conditions, particle properties and riser diameters also have significant effects on the solids concentrations in the fully developed region of CFB risers. Based on our experimental data and those reported in the open literature from CFB risers up to 0.4 m in diameter and 27 m in height with superficial gas velocities and solids circulation rates up to 11.5 m/s and 685 kg/m2·s, a new empirical correlation for predicting the average solids concentrations in the fully developed region of CFB risers is proposed. The correlation works well for a wide range of operating conditions, particle properties and riser diameters.  相似文献   

16.
17.
18.
In the absence of chemical reaction, mass transfer enhancement by suspended particles (mostly activated carbon) at the gas/liquid interface has been frequently reported and is usually explained by a “shuttle mechanism” exerted by particles with a high adsorption capacity for the transfer component. A major problem of this model is that unrealistic enrichment of the solids at the interface as compared to the bulk concentration has to be assumed. A comprehensive study has been carried out in a stirred tank in a wide range of the stirring speed (0-) with 9 different powdered solids suspended in water. With a flat gas/liquid interface, moderately hydrophobic solids significantly increased the mass transfer rates at low solid loadings (0.1-). However, the effect is not limited to particles with a high adsorption capacity for the gas (e.g. activated carbon) but it is observed also for non-porous particles (e.g. graphite or sulphur). When the particles are removed by rinsing, the absorption rates remain high. When the system is kept very clean (surfactant free), the enhancement effect is not observed. Based on these findings, it is concluded that adsorption of surfactants on hydrophobic solids cleans the interface resulting in higher mass transfer coefficients kL.  相似文献   

19.
Oxygen transfer prediction in aeration tanks using CFD   总被引:9,自引:0,他引:9  
In order to optimize aeration in the activated sludge processes, an experimentally validated numerical tool, based on computational fluid dynamics and able to predict flow and oxygen transfer characteristics in aeration tanks equipped with fine bubble diffusers and axial slow speed mixers, is proposed. For four different aeration tanks (1;1493;8191 and ), this tool allows to precisely reproduce experimental results in terms of axial liquid velocities, local gas hold-ups. Predicted oxygen transfer coefficients are within ±5% of experimental results for different operating conditions (varying pumping flow rates of the mixers and air flow rates). The actual bubble size must be known with precision in order to have a reliable estimation of the oxygen transfer coefficients.  相似文献   

20.
Based on airlift configuration, a novel circulating jet-loop submerged membrane bioreactor (JLMBR) adapted to ammonium partial oxidation has been developed. Membrane technology and combined air and water forced circulation are adopted to obtain a high biomass retention time and to achieve a separate control of mixing and aeration. This study is intended to determine how gas-liquid mass transfer is affected by operating conditions. In a first approximation, liquid was assumed to be perfectly mixed. A classical non-steady state clean water test, known as the “gas out-gas in” method, was used to determine the gas-liquid mass transfer coefficient kLa. Air and recirculated liquid superficial velocities were gradually increased from 0.013 to and 0.0056 to , respectively. Subsequently, the gas-liquid mass transfer coefficient kLa varied from 0.01 to . It appears to be influenced by the combined action of air and recirculated liquid flowrates in the range and , respectively, for air and liquid. Correlations are proposed to describe this double influence. Experiments were performed on tap water and a culture medium used for the autotrophic growth of nitrifying bacteria, respectively. Oxygen transfer appeared to be not significantly affected by the mineral salt encountered in this medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号