共查询到20条相似文献,搜索用时 0 毫秒
1.
An apparatus where individual bubbles are kept stationary in a downward liquid flow was adapted to simultaneously (i) follow mass transfer to/from a single bubble as it inevitably gets contaminated; (ii) follow its shape; and (iii) periodically measure its terminal velocity. This apparatus allows bubbles to be monitored for much longer periods of time than does the monitoring of rising bubbles. Thus, the effect of trace contaminants on bubbles of low solubility gases, like air, may be studied.Experiments were done with air bubbles of 1-5 mm initial equivalent diameter in a water stream. The partial pressure of air in the liquid could be manipulated, allowing bubbles to be either dissolving or kept at an approximately constant diameter.Both drag coefficient and gas-liquid mass transfer results were interpreted in terms of bubble contamination kinetics using a simplified stagnant cap model. Drag coefficient was calculated from stagnant cap size using an adaptation of Sadhal and Johnson's model (J. Fluid Mech. 126 (1983) 237).Gas-liquid mass transfer modelling assumed two mass transfer coefficients, one for the clean front of the bubble, the other for the stagnant cap. Adjusted values of these coefficients are consistent with theoretical predictions from Higbie's and Frössling's equations, respectively. 相似文献
2.
In this work, the effects of surface-active contaminants on mass transfer coefficients kLa and kL were studied in two different bubble contactors. The oxygen transfer coefficient, kL, was obtained from the volumetric oxygen transfer coefficient, kLa, since the specific interfacial area, a, could be determined from the fractional gas holdup, ε, and the average bubble diameter, d32. Water at different heights and antifoam solutions of 0.5- were used as working media, under varying gas sparging conditions, in small-scale bubble column and rectangular airlift contactors of 6.7 and capacity, respectively. Both the antifoam concentration and the bubble residence time were shown to control kLa and kL values over a span of almost 400%. A theoretical interpretation is proposed based on modelling the kinetics of single bubble contamination, followed by sudden surface transition from mobile to rigid condition, in accordance with the stagnant cap model. Model results match experimental kL data within ±30%. 相似文献
3.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations. 相似文献
4.
In this paper, a multi-scale approach is followed to study gas-liquid mass transfer in bubble columns. First, a single bubble of equivalent diameter d is considered. Its morphology and its gas to liquid relative velocity are related to the bubble diameter through the use of known correlations. Then, the gas-liquid mass transfer between the bubble and the surrounding liquid is studied theoretically. An equation describing the transport of the transferred species in the viscous boundary layer around the bubble is solved. In a second step, a bubble column of 6-10 m height is studied experimentally. The gas phase in the column is characterized experimentally by means of a gammametric technique. Finally, the two studies are linked, yielding a 1D mathematical model able to predict the gas-liquid mass transfer rate in a bubble column operated in the heterogeneous regime. 相似文献
5.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column. 相似文献
6.
In this paper, an original direct and non-intrusive technique using Planar Laser Induced Florescence with Inhibition (PLIFI) is proposed to quantify the local mass transfer around a single spherical bubble rising in a quiescent liquid. The new set-up tracks the mass transferred in the bubble wake for a plane perpendicular to the bubble trajectory instead of a parallel plane as in previous works, thus avoiding optical reflection problems. A spherical bubble is formed in a glass column containing fluorescent dye. A camera with a microscopic lens is placed underneath the column to record cross-sections of the transferred oxygen. A high-speed camera is located far from the column to simultaneously record the bubble position, size, shape and velocity. The dissolved gas inhibits the fluorescence so that oxygen concentration fields can be measured. From this, a calculation method is developed to determine mass transfer on the micro-scale. Experimental results are compared to the Sherwood numbers calculated from the Frössling and Higbie models used for fully contaminated and clean spherical bubbles, respectively. Results show that all experimental Sherwood numbers occur between the two models, which gives credence to the measurements. The new technique is then developed for bubble diameters ranging from 0.7 to 2 mm in six hydrodynamic conditions (1<Re<102, 102<Sc<106). 相似文献
7.
In this study, surface-to-bed heat transfer experiments were performed to gain insight on heat transfer and hydrodynamics in a three-phase inverse fluidized bed. Air, tap water or 0.5 wt.% aqueous ethanol, and polypropylene were, respectively, the gas, liquid and solid phases. The solid loading was varied from 0 to 30 vol.%, and the gas and liquid superficial velocities from 2 to 50 mm/s and 0 to 21 mm/s, respectively. Visual observations were associated with measured phase holdups and instantaneous heat transfer coefficients. Larger gas velocities lead to an increase in bubble size due to the transition to the coalesced bubble flow regime. The greater turbulence induced by the larger bubbles increases the average heat transfer coefficient. On the other hand, adding ethanol reduces the heat transfer coefficient. Solid concentrations up to ∼13 vol.% increase the average heat transfer coefficient whereas higher solid concentrations tend to lower it. The distribution of instantaneous heat transfer coefficient peak height is wider at higher gas and liquid velocities while the addition of a surfactant narrows it. Gas holdups and average heat transfer coefficients are both compared with existing correlations, which are then adjusted for a better fit. 相似文献
8.
The aim of this work is to develop a non-intrusive experimental technique to measure oxygen concentration in a liquid phase. This technique relies on the planar laser-induced fluorescence (PLIF). In its classical version, PLIF consists in viewing the presence of a fluorescent dye in a liquid phase by means of a laser sheet. Digital image analysis gives the relationship between local grey levels and the dye concentration. The principle of the oxygen concentration measurement rests on the fact that the oxygen molecules inhibit this fluorescence, in proportion to their concentration. After calibration, analysis of the grey levels gives an image of the 2D field of oxygen concentration. 相似文献
9.
Oxygen transfer prediction in aeration tanks using CFD 总被引:9,自引:0,他引:9
In order to optimize aeration in the activated sludge processes, an experimentally validated numerical tool, based on computational fluid dynamics and able to predict flow and oxygen transfer characteristics in aeration tanks equipped with fine bubble diffusers and axial slow speed mixers, is proposed. For four different aeration tanks (1;1493;8191 and ), this tool allows to precisely reproduce experimental results in terms of axial liquid velocities, local gas hold-ups. Predicted oxygen transfer coefficients are within ±5% of experimental results for different operating conditions (varying pumping flow rates of the mixers and air flow rates). The actual bubble size must be known with precision in order to have a reliable estimation of the oxygen transfer coefficients. 相似文献
10.
A novel computational fluid dynamics (CFD) based approach is suggested, which incorporates interfacial mass transfer at moving interfaces. This approach is general and able to govern multicomponent systems as well as interfacial boundary conditions in an arbitrary form. This is important in order to properly handle the typical concentration jump at the phase interface and to avoid an assumption of a constant distribution coefficient, which is seldom met in real processes. A test case study is carried out for a gas bubble rising in a stagnant liquid phase, whereas two different liquids, namely water and water–carboxymethylcellulose solution, are used. The gas bubble contains 99% of oxygen diffusing into continuous phase. The movement of the bubble is simulated using the level set method. Both velocity vectors and concentration contours are demonstrated and analysed. 相似文献
11.
Experiments were carried out to investigate the effect a surface active agent on homogeneous-heterogeneous flow regime transition in a laboratory scale bubble column. Air and water with various amount of CaCl2 were the phases. The (voidage e) - (gas flow rate q) dependence was measured. The critical point where the homogeneous regime loses stability and the transition begins was evaluated by several methods. These methods are based on the slip speed concept and the drift flux model. The critical values of voidage and gas flow rate were taken as the quantitative measures of the homogeneous regime stability. They were plotted against the surfactant concentration. It was found that the surfactant has a dual effect on both the voidage and the regime transition: low concentration stabilizes and larger concentration destabilizes the homogeneous bubble bed. At present, we do not have an explanation to these observations. Possible physical mechanisms of the surfactant effect are expected to be revealed by further experiments, which are currently under way. 相似文献
12.
Rodolphe Sardeing 《Chemical engineering science》2006,61(19):6249-6260
This paper focuses on the effect of surfactants on the mass transfer parameters (volumetric mass transfer coefficient kLa and liquid-side mass transfer coefficient kL). Tap water and aqueous solutions with surfactants (anionic, cationic and non-ionic at concentrations up to are used as liquid phases. The bubbles are generated into a small-scale bubble column having an elastic membrane with a single orifice as gas sparger. To understand the effects of the surfactants on the mass transfer, not only the static surface tension is used, but also the characteristic adsorption parameters like the surface coverage ratio at equilibrium Se. The liquid-side mass transfer coefficient is obtained from the ratio of the volumetric mass transfer coefficient (measured by a chemical method) and the specific interfacial area. These two parameters are obtained simultaneously. The methods used to obtain these parameters are described in Painmanakul et al. [2005. Effects of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science 60, 6480-6491].Whatever the liquid phase, three zones are found on the liquid-side mass transfer coefficient variation with the bubble diameter. For bubble diameters less than 1.5 mm, whatever the liquid phases, the kL values are roughly constant at . For bubble diameters greater than 3.5 mm, the kL values do not vary much with the bubble diameter, but depend on the surfactant concentration. For bubble diameters between 1.5 and 3.5 mm, the kL values increase from to the value reached at 3.5 mm. This increase depends on the surfactants. Higbie's model does not represent the kL values for bubble diameters greater than 3.5 mm, even though there is a small amount of surfactant in the liquid phase. Thus, a model is proposed for each zone described above. Explanations are also proposed for the effect of the surfactant on the kL values for each of the above zones. 相似文献
13.
14.
D. Colombet D. Legendre A. Cockx P. Guiraud F. Risso C. Daniel S. Galinat 《Chemical engineering science》2011,(14):3432
We consider the liquid-side mass transfer coefficient kL in a dense bubble swarm for a wide range of gas volume fraction (0.45%≤αG≤16.5%). The study is performed for an air–water system in a square column. Bubble size, shape and velocity have been measured for different gas flow rates by means of a high speed camera. Gas volume fraction and bubble velocity have also been measured by a dual-tip optical probe. Both of these measurements show that the bubble vertical velocity decreases when increasing αG in agreement with previous investigations. The mass transfer is measured from the time evolution of the dissolved oxygen concentration, which is obtained by the gassing-out method. The mass transfer coefficient is found to be very close to that of a single bubble provided the bubble Reynolds number is based on the average equivalent diameter 〈deq〉 and the vertical slip velocity 〈Vz〉. 相似文献
15.
Mitsuo Kamiwano Meguru Kaminoyama Kazuhiko Nishi Daigo Shirota 《Chemical Engineering Communications》2013,200(9):1096-1114
In this study, we report the measurement results of various spatial distributions, such as Sauter diameter, gas holdup ratio, and interface area per unit liquid volume, in a vessel using a real-time, high-speed image processing system developed by ourselves. We attempted to separate liquid side mass transfer coefficients, k L , from overall volumetric mass transfer coefficients, k L a, based on the results mentioned above. And we examined the relations between power consumption per unit volume, P v , and both k L and k L a in order to establish correlation equations of k L and k L a with P v , gas holdup ratio, gas superficial velocity, v s , and surface tension. 相似文献
16.
17.
V. Linek M. Korda M. Fujasov T. Moucha 《Chemical Engineering and Processing: Process Intensification》2004,43(12):1511-1517
Experimental data on the average mass transfer liquid film coefficient (kL) in an aerated tank stirred by two Rushton turbines on common shaft are presented. Liquid media used were distilled water and 0.5 M sodium sulphate solution. Volumetric mass transfer coefficient (kLa) was measured by the dynamic pressure method with pure oxygen absorption. Specific interfacial area a was taken from Alves et al. [Chem. Eng. Proc., in press] who measured data on local gas hold-up and local average bubble diameter in the same apparatus and batches. Values of kL are quantitatively interpreted in terms of correlations based on idealized eddy structures of turbulence in the bubble vicinity, namely by “eddy” model by Lamont and Scott [AIChE J. 16 (1970) 513] in the form of kL=0.523(eν/ρ)0.25(D/ν)1/2, which fits the data with the mean deviation of 4.7%. It is shown that the decisive quantity to correlate kL in the stirred tank is power dissipated in the liquid phase rather than the bubble diameter and the slip velocity as assumed by Alves et al. 相似文献
18.
Xulu Chen Guo-hua Liu Haitao Fan Meidi Li Tao Luo Lu Qi Hongchen Wang 《Korean Journal of Chemical Engineering》2013,30(9):1741-1746
The effects of anionic, cationic, and non-ionic surfactants (SDS, SDBS, CTAB and Tween20) on oxygen mass transfer (OMT) in fine bubble aeration systems were investigated. The overall gas-liquid volumetric mass transfer coefficient (K L a), specific interfacial area (a), and liquid-side mass transfer coefficient (K L ) parameters were used to assess the influence of the surfactants. At the same concentration, the different surfactants were observed to influence the K L a value as follows: K L a (SDBS)>K L a (SDS)>K L a (tween20)>K L a (CTAB). For all used surfactants, the overall trends showed a significant decrease in the K L a value at low concentrations (0–5mg/L), while the K L a value recovered somewhat at high concentrations (10–20mg/L). The decrease to the KL value was found to be much larger than increase in the a value in the presence of surfactants. Furthermore, a simple model was established that provides an OMT prediction for different surfactants. 相似文献
19.
Sergio García-Salas M.E. Rosales Peña Alfaro Frederic Thalasso 《Chemical engineering science》2008,63(4):1029-1038
Precise measurement of gas-liquid interfacial surface area is essential to reactor design and operation. Mass transfer from the gas phase to the liquid phase is often a key feature that controls the overall process. Measurement of gas-liquid interfacial area is often made through a separate measurement of the gas holdup and bubble size with complex and/or sophisticated methods. In this work, an inexpensive method is presented for the simultaneous determination of both local gas holdup and bubble diameter. The method is based on the withdrawal of the air-liquid dispersion under non-isokinetic conditions and on bubble counting via a simple optical device. The method was calibrated in a bubble column with several withdrawal pressures using coalescing and non-coalescing media. During the same calibration experiment, gas holdup was also measured manometrically and individual bubble diameters were measured by a photographic method. With a vacuum pressure of 3 kPa, local interfacial area measured with the withdrawal method produced a relative error below 13%, compared to the manometric/photographic method. The method was then used to characterize local specific interfacial area in a bubble column under several operating conditions with coalescing and non-coalescing media. In coalescing media and with superficial gas velocities (vg) from 0.25 to 3.5 cm/s, the average interfacial area ranged from 17 to . With non-coalescing media the average interfacial area ranged from 40 to . Under the test condition it was observed that gas holdup is a parameter that has a greater distribution (standard deviation from 30% to 70%) than the volume-mean bubble diameter (standard deviation from 6% to 12%). It is shown that a model previously developed for characterizing gas holdup homogeneity is also suitable for characterizing interfacial area homogeneity. 相似文献
20.
Mariano Martín Francisco J. Montes Miguel A. Galán 《Chemical engineering science》2007,62(6):1741-1752
Bubble columns are among the most used equipments for gas-liquid mass transfer processes. This equipment's aim is to generate gas dispersions into a liquid phase in order to improve the contact between phases. Bubble coalescence has always been one of their greatest problems, since it reduces the superficial gas-liquid contact area. However, bigger bubbles can oscillate, and these oscillations increase the mass transfer rate by means of modifying the contact time as well as the concentration profiles surrounding the bubble. In the present work, the coupled effect has been studied by means of two-holed sieve plates with diameters of 1.5, 2 and 2.5 mm each, close enough to allow the coalescence and separated enough to avoid it. The results show that although coalescence decreases mass transfer rate from bubbles the deformable bubble generated can, in certain cases, balance the decrease in mass transfer rate due to the reduction in superficial area. This fact can then be used to avoid the harmful effect of coalescence on the mass transfer rate. Empirical and theoretical equations have also been used to explain the phenomena. 相似文献