首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for pressure drop in the ejector induced downflow bubble column based on mechanical energy balance within the framework of dynamic interaction of the phases has been formulated. The model includes the effect of bubble formation and form drag at interface on the pressure drop. It provides a functional form of equation for correlating pressure drop. The theoretical model proposed in the present study appears to predict the pressure drop satisfactorily for gas-liquid dispersed flow in the concurrent gas-liquid downflow bubble column.  相似文献   

2.
A functional form of equation for predicting pressure drop in a modified non-Newtonian downflow bubble column has been formulated. The equation has been developed based on the bubble formation, drag at interface and the wettability effect of the liquid. Also the bubble-liquid interfacial shear stress in two-phase flow is analyzed and correlated with the dynamic, geometric and physical variables. The functional form of equation appears to predict the pressure drop satisfactorily for two-phase dispersed flow in the co-current modified downflow bubble column with carboxy methyl cellulose (CMC) solution in water with different concentrations.  相似文献   

3.
Quality of mixing in a modified downflow bubble column has been analyzed by using information entropy theory. Mass transfer efficiency based on quality of mixing has also been enunciated in this work. Empirical models have been developed for downflow system with the parameters which affect the quality of mixing and mass transfer efficiency. The developed correlation for quality of mixedness in the downflow bubble column was interpreted by the mass transfer phenomena. The present analysis on the quality of mixing in downward two-phase flow in bubble column may give insight into a further understanding and modeling of multiphase reactors in industrial applications.  相似文献   

4.
A precise knowledge of gas-holdup distribution and energy dissipation is essential for designing gas-liquid contactors. A semi-theoretical approach has been presented to obtain the axial distribution of gas holdup through the column for gas-non-Newtonian liquid two-phase flow system. The whole column is distinguished to have three zones based on gas holdup, viz. top, middle and bottom. The middle section where significant accumulation of bubbles takes place, contributes higher gas holdup towards the total compared to the other two sections. Energy dissipation in the column have been calculated from two-phase gas-liquid frictional losses. A comparative study shows that substantial gas holdup are observed in the present system with considerably lower energy losses. The experimental data of gas holdup have been correlated in terms of pressure drop by the modified Lockhart-Martinelli equation.  相似文献   

5.
In this study, time-averaged gas holdup distributions were investigated in a 16 cm diameter bubble column for two-phase dispersed system of air–water and air–glycerol solution of 10 wt% by using ultrasonic computed tomography (UCT). A quantitative result of UCT – as a coupling of the ultrasonic transmission method and the iterative filtered backprojection (IFBP) image reconstruction technique – is presented. The UCT results are in a good agreement with those by the bed expansion method. A higher gas holdup in the air–glycerol 10 wt% solution than in the air–water system was observed. The distribution of gas holdup in the column with an attached baffle is also investigated by UCT.  相似文献   

6.
The bubble characteristics have been investigated in an air–water bubble column with shallow bed heights. The effect of bed height, location and the presence of solids on the bubble size, bubble rise velocity and overall and sectional gas holdup are studied over a range of superficial gas velocities. Optimal shallow bed operation relies on the combined entrance and exit effects at the distributor and the liquid bed surface. The gas holdup is found to decrease with an increase in H/D ratio but the effect is diminishing at high H/D ratios. A H/D ratio of 2–4 is found to be suitable for shallow bed operation. The presence of solids causes the formation of larger bubbles at the distributor and the effect is diminishing as the gas velocity is increased.  相似文献   

7.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations.  相似文献   

8.
Dispersion coefficient of bubble motion based on velocity distribution theory has been analyzed in up and downward gas-liquid two-phase contactor. The intensity of dispersion of phase depends on motion of the dispersed phase and the characteristics of velocity distribution. In this paper the effects of operating and geometric variables on the dispersion coefficient of bubble motion and the characteristic factor of velocity distribution have been analyzed within the range of column diameter 0.10-2.5 m, superficial liquid velocity, 0.04-0.21 m/s and superficial gas velocity 0.41-3.16 mm/s. From the different developed model of longitudinal dispersion coefficient of liquid, comparison of dispersion coefficient of bubble motion and characteristic feature of velocity distribution in down and upflow two-phase contactor has been reported. Also the functionalities of dispersion coefficient of bubble motion and velocity characteristic factor have been developed with operating variables. The condition for dispersion based on velocity pattern has also been discussed in the present work. The present analysis on the dispersion coefficient of bubble motion and velocity distribution factor associated with the knowledge of the liquid phase dispersion in two-phase contactor can give insight into a further understanding and modeling of multiphase reactor in industrial applications.  相似文献   

9.
The distribution of gas holdup, the rise velocity of gas bubble swarm and the Sauter mean bubble size are estimated with a small diameter laboratory scale bubble column using electrical resistance tomography (ERT). The theory of gas disengagement based on ERT methods has been developed for estimations of bubble size and bubble rise velocity. The gas holdups of large bubble swarm and small bubble swarm, the distribution of both bubble size are derived through the analysis of gas disengagement based on the differences of the rise velocity of bubble swarm at the cross-section imaged by electrical resistance tomography. Experimental results are in very good agreement with correlations and conventional estimation obtained using pressure transmitter methods. The proposed methodology can be also used as an analysis tool for quantifying and optimizing the performance of other types of complex reaction systems.  相似文献   

10.
Experiments were carried out to investigate the effect a surface active agent on homogeneous-heterogeneous flow regime transition in a laboratory scale bubble column. Air and water with various amount of CaCl2 were the phases. The (voidage e) - (gas flow rate q) dependence was measured. The critical point where the homogeneous regime loses stability and the transition begins was evaluated by several methods. These methods are based on the slip speed concept and the drift flux model. The critical values of voidage and gas flow rate were taken as the quantitative measures of the homogeneous regime stability. They were plotted against the surfactant concentration. It was found that the surfactant has a dual effect on both the voidage and the regime transition: low concentration stabilizes and larger concentration destabilizes the homogeneous bubble bed. At present, we do not have an explanation to these observations. Possible physical mechanisms of the surfactant effect are expected to be revealed by further experiments, which are currently under way.  相似文献   

11.
In this paper, the effect of antifoam agents on bubble characteristics in bubble columns is studied. Specifically, the bubble characteristics of air in tap water are compared to those of air in 5% and 10% antifoam solutions. Bubble characteristics such as gas holdup, bubble diameter, bubble-size distribution, and damping ratio were investigated at various superficial gas velocities. These properties were deduced from the acoustic sound measurement. The study revealed that the addition of antifoam chemicals reduces the overall gas holdup and increases the average bubble diameter. The bubble-size distribution in tap water is found to be homogeneous while in antifoam solutions to be heterogeneous. It is also found that at low gas velocities the damping ratio for antifoam solutions is higher than that for tap water, while at high gas velocities the damping ratio is not affected. The results affirm that acoustic probes are excellent measuring tools over classical tools at moderate gas velocities.  相似文献   

12.
It is known that the performances of multi-phase reactors depend on the operating parameters (the temperature and the pressure of the system), the phase properties, and the design parameters (the aspect ratio (AR), the bubble column diameter, and the gas sparger design). Hence, the precise design and the correct operation of multi-phase reactors depends on the understanding and prediction of the fluid dynamics parameters. This paper contributes to the existing discussion on the effect of operating and design parameter on multi-phase reactors and, in particular, it considers an industrial process (e.g., the LOPROX (low pressure oxidation) case study, which is typical example of two-phase bubble columns). Based on a previously-validated set of correlations, the influence of operating and design parameter on system performances is studied and critically analyzed. First, we studied the effects of the design parameter on the liquid–gas interfacial area, by keeping constant the fluid physical–chemical properties as well as the operating conditions; subsequently, we discussed for a fixed system design, the influence of the liquid phase properties and the operating pressure. In conclusion, this paper is intended to provide guidelines for the design and scale-up of multi-phase reactors.  相似文献   

13.
An exclusive study has been done on experimental investigation of the two-phase frictional pressure drop with air-non-Newtonian liquid (CMC solutions) system in cocurrent downflow bubble column. The effects of gas and liquid flowrate on two-phase frictional pressure drop have been illustrated. An attempt has been made to fit the experimental two-phase frictional pressure drop data by modified Lockhart and Martinelli correlation and Aoki correlation. In another approach, friction factor method was adopted to correlate the experimental results in terms of dimensionless groups of the operating and system variables and the predicted values were found to be in good agreement with the experimental result. The experiments were performed in the bubbly flow regime because of its stability and uniformity.  相似文献   

14.
This work is a study of the effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Various liquids covering a range of surface tension and viscosity values are employed, while the gas phase is atmospheric air. A fast video technique is used for visual observations and, combined with image processing, is used for gas holdup and bubble size measurements. New data on average gas holdup values, bubble size distributions and Sauter diameters are presented and are consistent with existing physical models on coalescence/breakage. A correlation based on dimensionless groups for the prediction of gas holdup in the homogeneous regime is proposed and found to be in good agreement with available data.  相似文献   

15.
This experimental study is aimed at investigating the effect of liquid phase properties and gas distribution on bubble and hydrodynamic characteristics in bubble columns. With the various measuring techniques used, systematic measurements of bubble size, velocity and frequency and gas hold-up are possible. Bubble size distribution and shape factors which are rarely found in literature, are also available. Water–alcohol solutions are used to simulate the behaviour of industrial non-coalescing organic mixtures. The experimental results obtained with three different spargers in the coalescence inhibiting solutions are compared with data on standard coalescing air–water system. Evolutions of bubble characteristics and gas hold-up have been interpreted successfully by considering the simultaneous influence of the hydrodynamic regime of the gas–liquid flow and of the operating regime of the distributor. It has also been put into evidence that bubble frequency measurements are good tools to evaluate distributor efficiency. The influence of the distributor has been shown to be enhanced in non-coalescing media. Bubble shape and bubble size distributions are dramatically modified by addition of minute quantities of alcohol in water. Bimodal distributions can be observed even in the homogeneous regime with orifice nozzle spargers.  相似文献   

16.
A bubble column, subjected to low-frequency vibrations, displays maxima in the gas holdup when operated at certain frequencies. These maxima represent various harmonics created by standing waves. The axial distribution of gas holdup was measured for these harmonics to demonstrate that the gas holdup at the anti-nodes is higher than at the nodes; this phenomena is a manifestation of the primary Bjerknes force acting on the bubbles. The Bjerknes force can be exploited to obtain the optimum increase in the gas holdup for a given set of operating conditions.  相似文献   

17.
鼓泡塔内气液两相湍流实验研究   总被引:1,自引:0,他引:1  
介绍了研究鼓泡塔气液两相流的实验装置、实验方法。液相用激光多普勒测速技术(LDV)测量,气相用粒子示踪测速技术(PIV)测量。实验表明,轴向液相速度的径向分布呈塔中心峰值、壁面附近倒流形式,且与气相表观速度大小有关,当液相表观速度一定时,随气相表观速度增大而愈加陡峭,返混也剧烈。当表观液速与表观气速之比小于19.6时,返混区总是存在,且返混区大小与高度有关:当表观液遣与表观气速之比大于19.6时,返混消失,含气率分布由塔中心峰值转向壁面峰值。径向液相速度既与气相表现速度有关又与位置高度有关,在塔底部呈现负值,这意味着向塔轴心方向流动。随着塔高增加。流动方向逐渐转变为向塔壁方向,且又有明显的峰值。  相似文献   

18.
In this work, the influence of structured packing on gas holdup in gas-liquid-solid dispersions has been studied. The experiments were carried out in an empty column and in column containing structured packing operating under identical conditions. Glass beads and silicon carbide particles were used as the solid material and the volumetric fraction of solids was varied from 0% to around 10%. The liquid viscosity was strongly modified using water, CMC solution and glycerol. The experimental results obtained with both columns were compared with previous results obtained in two-phase bubble columns. The influence of structured packing on the total gas holdup for different superficial gas velocities was found to be similar with and without suspended solids. Therefore, the results obtained in this work were analysed on the basis of correlations derived earlier for gas-liquid dispersions. Excepting the results obtained with glycerol, these correlations can predict the gas holdup of three-phase bubble columns with reasonable accuracy.  相似文献   

19.
Performance of an ejector system in a two-phase downflow bubble column has been evaluated with respect to the energy dissipation during coaxial flow of liquid and gas in a parallel throat and divergent diffiser and during gas—liquid mixing in the column. Experiments were carried out in a 51.6 mm i.d. column with five different nozzles. Three systems, namely air—water, air-kerosene and air—paraffin were used. Correlations have been developed for predicting the ejector loss coefficient as well as mixing loss coefficient as a function of different physical and dynamic variables of the system.  相似文献   

20.
本文在热态条件下,研究了鼓泡浆液反应器的气含率、反应器直径为0.098m,物系组成为氮气-液体石腊-石英砂。考察了气速、压力、温度、静床高及固体引入等因素对气含率的影响。对于53μm粒子的三相浆态体系,气含率与表观气速关系式为εG=0.053uG^1.2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号