首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文在热态条件下,研究了鼓泡浆液反应器的气含率、反应器直径为0.098m,物系组成为氮气-液体石腊-石英砂。考察了气速、压力、温度、静床高及固体引入等因素对气含率的影响。对于53μm粒子的三相浆态体系,气含率与表观气速关系式为εG=0.053uG^1.2。  相似文献   

2.
Gas-liquid upward flow experiments have been performed in two bubble columns of different diameters (0.10 and 0.29 m,) using air as gas phase and several liquids: water, aqueous solutions of ethanol and glycerine, kerosene, and a solution of a surfactant in kerosene. The main goal of the study is the analysis of foaming systems, including the comparison of their behavior with respect to non-foaming systems. The gas holdup was determined experimentally as a function of the gas and liquid superficial velocities in bubbling, churn-turbulent and foaming regimes. It was found that, for foaming systems, semi-batch operation enhances foam formation, yielding higher holdups than those obtained in continuous operation at very low liquid velocities. Opposite to what is observed in non-foaming systems, the liquid superficial velocity affects the gas holdup appreciably in foaming systems. An increase in column diameter results in a decrease in gas holdup for all the systems studied. In aqueous foaming systems, this trend is more drastic since foam is inhibited as the column diameter increases.  相似文献   

3.
This work presents an experimental analysis of the effect of the addition of a surfactant on gas holdup in a bubble column with an organic liquid phase. For the system considered, the addition of surfactant increases the gas holdup by increasing the volume of foam within the column. The surfactant concentration has negligible effect on the intrinsic gas holdup of both the bubbling and foaming regions.  相似文献   

4.
An experimental study of hydrodynamic parameters of bubble columns with the presence of two immiscible liquid phases, water and kerosene, was performed. The solid used consisted of glass beads with a narrow size distribution. The analysis was based on the determination of global gas holdups and phases distribution along the length of the column in the semibatch mode of operation. The results show thai the presence of two immiscible liquid phases significantly reduces the gas holdup in the bubble column as compared to the results obtained with pure aqueous and organic liquid phases. The distribution of solid phase in a slurry bubble column is drastically affected by the presence of immiscible liquid phases, and exhibits a qualitatively different behavior when compared lo systems with one liquid phase. The addition of small amounts of aqueous phase to a slurry bubble column in which the liquid phase is kerosene results in the sedimentation of the solid. As the amount of aqueous phase added is increased, the solid fluidizes yielding almost flat concentration profiles.  相似文献   

5.
This work presents experimental data on gas holdup in slurry bubble columns with a foaming liquid. The effects of solids concentration, solid particle size, superficial phase velocities and column dimensions on the gas holdup are analyzed. At low superficial gas velocities (less than 4cm/s), for which the liquid does not foam, the presence of solids with small particle size does not affect the gas holdup whereas solids with large particle size induce foam formation and thus their presence increases the gas holdup. In the foaming regime, an increase of solids concentration decreases the gas holdup. The operating mode has a strong effect on the gas holdup: the semi-batch operating mode (stagnant liquid-solid suspension) increases the ability of the liquid to foam with respect to the continuous mode. Regarding the effect of column dimensions, the results presented show that the height of the bubble column does not affect at an appreciable extent the gas holdup in the range 6 < LID < 12. At high gas velocities (greater than 6 cm/s) the gas holdups obtained in a 30 cm-internal diameter column are the same as those measured in a 10 cm-internal diameter column.  相似文献   

6.
The distribution of gas holdup, the rise velocity of gas bubble swarm and the Sauter mean bubble size are estimated with a small diameter laboratory scale bubble column using electrical resistance tomography (ERT). The theory of gas disengagement based on ERT methods has been developed for estimations of bubble size and bubble rise velocity. The gas holdups of large bubble swarm and small bubble swarm, the distribution of both bubble size are derived through the analysis of gas disengagement based on the differences of the rise velocity of bubble swarm at the cross-section imaged by electrical resistance tomography. Experimental results are in very good agreement with correlations and conventional estimation obtained using pressure transmitter methods. The proposed methodology can be also used as an analysis tool for quantifying and optimizing the performance of other types of complex reaction systems.  相似文献   

7.
The bubble characteristics have been investigated in an air–water bubble column with shallow bed heights. The effect of bed height, location and the presence of solids on the bubble size, bubble rise velocity and overall and sectional gas holdup are studied over a range of superficial gas velocities. Optimal shallow bed operation relies on the combined entrance and exit effects at the distributor and the liquid bed surface. The gas holdup is found to decrease with an increase in H/D ratio but the effect is diminishing at high H/D ratios. A H/D ratio of 2–4 is found to be suitable for shallow bed operation. The presence of solids causes the formation of larger bubbles at the distributor and the effect is diminishing as the gas velocity is increased.  相似文献   

8.
In this paper, the effect of antifoam agents on bubble characteristics in bubble columns is studied. Specifically, the bubble characteristics of air in tap water are compared to those of air in 5% and 10% antifoam solutions. Bubble characteristics such as gas holdup, bubble diameter, bubble-size distribution, and damping ratio were investigated at various superficial gas velocities. These properties were deduced from the acoustic sound measurement. The study revealed that the addition of antifoam chemicals reduces the overall gas holdup and increases the average bubble diameter. The bubble-size distribution in tap water is found to be homogeneous while in antifoam solutions to be heterogeneous. It is also found that at low gas velocities the damping ratio for antifoam solutions is higher than that for tap water, while at high gas velocities the damping ratio is not affected. The results affirm that acoustic probes are excellent measuring tools over classical tools at moderate gas velocities.  相似文献   

9.
The study of gas-liquid-solid systems structure requires reliable measurement tools. In this paper, preliminary results on the potential use of a monofibre optical probe to investigate such flow are presented. This probe, manufactured at LEGI, allows the simultaneous measurement of the gas phase residence time and gas phase velocity. This specificity makes this probe more interesting than classical single tip probes (which measure only the gas residence time) or double tip probes (which are more intrusive). Although extensively used in two-phase gas-liquid, this probe was never used in gas-liquid-solid systems. First, the probe signal response is studied for three-phase flow conditions in the presence of solids. Results show that for soft solids, the probe tips can be contaminated when the probe pierces the solid. The signal processing procedure was modified accordingly to take into account these events. Second, the probe results are validated by comparing global results (global void fraction, gas flowrate) deduced from profile measurements with measurements performed by independent means. Lastly, void fraction profiles and interfacial area are studied more in detail. Depending on the solid loading, these profiles exhibit different behaviours. These features are associated to characteristics of the flow such as the transition from an homogeneous regime to an heterogenous regime, and are consistent with global observation performed by independent means. This demonstrates the ability of the probe to connect local information to the global behaviour and structure of the flow.  相似文献   

10.
    
H. Jin  Y. Qin  S. Yang  G. He  Z. Guo 《化学工程与技术》2013,36(10):1721-1728
The effects of operating conditions on radial variation of gas holdups, bubble swarm rising velocity, and Sauter mean diameter were investigated in a bubble column reactor under elevated pressures using a conductivity probe method. Air served as gas phase and tap water as liquid phase with varying gas velocity and pressure. All three parameters increased constantly with higher superficial gas velocity. Maximum holdup, velocity, and Sauter mean diameter were found at the center of the cross section. Two different cases for Sauter mean diameter distribution were observed. The gas holdups increase continuously with higher system pressure, but decrease for bubble swarm rising velocity and Sauter mean diameter. According to experimental results, an empirical correlation of the gas holdup profiles is presented.  相似文献   

11.
Unsteady gas-liquid flows in bubble columns are comprised of various flow processes occurring with varying length and time scales and govern mixing and transport processes. In the present work, we have characterized dynamic and time-averaged properties of gas-liquid flows in rectangular bubble columns using conductivity probes. The development of a single-tip conductivity probe, data processing methodology, and photographic validation procedure is discussed in detail. The effect of superficial gas velocity and aerated liquid height-to-width (H/W) ratio on voidage fluctuations and time-averaged gas holdup was investigated. The experimental data presented here can help in understanding the dynamics of various flow processes and validating computational fluid dynamics based models.  相似文献   

12.
气—液鼓泡塔中流动域和气含率的分布   总被引:1,自引:0,他引:1  
利用压力传感器测定了气、液两相鼓泡塔内不同轴、径向位置上压强的脉动信号,分析了压强的脉动特征,计算了各种操作条件下塔内不同轴向位置截面上的平均气含率,发现在不同操作条件下,塔内可能出现不同的流动域分布,即全塔均匀鼓泡域、全塔过渡域、全塔湍动鼓泡域以及均匀鼓泡域,过渡域和湍动鼓泡域中的相邻2种或3种流域同时出现在塔内不同高度上。提出了不同轴向位置流域转变的判据。并发现,同一截面的不同径向位置基本处于同一流域内。同时研究了鼓泡塔内气含率在轴向上的分布规律,给出了不同流动域内气含率的关系式。  相似文献   

13.
Gas-liquid interphase mass transfer was investigated in a slurry bubble column under CO2 hydrate forming operating conditions. Modeling gas hydrate formation requires knowledge of mass transfer and the hydrodynamics of the system. The pressure was varied from 0.1 to 4 MPa and the temperature from ambient to 277 K while the superficial gas velocity reached 0.20 m/s. Wettable ion-exchange resin particles were used to simulate the CO2 hydrate physical properties affecting the system hydrodynamics. The slurry concentration was varied up to 10%vol. The volumetric mass transfer coefficient (klal) followed the trend in gas holdup which rises with increasing superficial gas velocity and pressure. However, klal and gas holdup both decreased with decreasing temperature, with the former being more sensitive. The effect of solid concentration on klal and gas holdup was insignificant in the experimental range studied. Both hydrodynamic and transport data were compared to best available correlations.  相似文献   

14.
The maximum range of the radial position within which liquid flow reversal can be expected to occur in zero net liquid flow bubble columns is predicted. It is shown that existing models, that employ this position as an input parameter for predicting the liquid velocity profile, are intrinsically valid only when the flow reversal dimensiontess radius is confined to ihe narrow range of 0.644-0.707. It is demonstrated that radial positions outside this range are unacceptable on physical grounds. Guidelines for evaluating the appropriate location of the flow reversal point for typical bubble column operating conditions are proposed.  相似文献   

15.
    
It is known that the performances of multi-phase reactors depend on the operating parameters (the temperature and the pressure of the system), the phase properties, and the design parameters (the aspect ratio (AR), the bubble column diameter, and the gas sparger design). Hence, the precise design and the correct operation of multi-phase reactors depends on the understanding and prediction of the fluid dynamics parameters. This paper contributes to the existing discussion on the effect of operating and design parameter on multi-phase reactors and, in particular, it considers an industrial process (e.g., the LOPROX (low pressure oxidation) case study, which is typical example of two-phase bubble columns). Based on a previously-validated set of correlations, the influence of operating and design parameter on system performances is studied and critically analyzed. First, we studied the effects of the design parameter on the liquid–gas interfacial area, by keeping constant the fluid physical–chemical properties as well as the operating conditions; subsequently, we discussed for a fixed system design, the influence of the liquid phase properties and the operating pressure. In conclusion, this paper is intended to provide guidelines for the design and scale-up of multi-phase reactors.  相似文献   

16.
在直径0.10m、高1.05m 的鼓泡塔中,对空气-水、乙醇、5%NaCl(aq)、5%KCl(aq)、5%CaCl_2(aq)、5%Na_2SO_4(aq)、2.34%MgCl_2(aq)等物系气含率的温度效应和电解质效应进行了实验研究。通过引入((P+Ps)/P)数群很好地关联了气含率的温度效应,找出了气含率的电解质校正因子与液相离子强度的关系。  相似文献   

17.
Mean gas holdup, lateral distribution of gas holdup and axial mixing of gas and liquid were measured in bubble columns of 12 and 19cm i.d. The lateral distribution of gas holdup was strongly dependent on the flow regimes in the column. The axial mixing of liquid in the homogeneous bubble flow regime was much smaller than that in the heterogeneous bubble flow regime, and was not expressed by existing correlations. The axial mixing of liquid in the homogeneous bubble flow and the intermediate flow regime was simulated with a flow model based on the lateral distribution of buoyancy force and the effective viscosity. The axial mixing of gas was larger than that of liquid.  相似文献   

18.
In this study, time-averaged gas holdup distributions were investigated in a 16 cm diameter bubble column for two-phase dispersed system of air–water and air–glycerol solution of 10 wt% by using ultrasonic computed tomography (UCT). A quantitative result of UCT – as a coupling of the ultrasonic transmission method and the iterative filtered backprojection (IFBP) image reconstruction technique – is presented. The UCT results are in a good agreement with those by the bed expansion method. A higher gas holdup in the air–glycerol 10 wt% solution than in the air–water system was observed. The distribution of gas holdup in the column with an attached baffle is also investigated by UCT.  相似文献   

19.
Total and sectional gas-phase holdups are measured in a wide (0.305 m internal diameter) and long (3.7 m) glass bubble column al ambient conditions as a function of superficial gas velocity. Sectional gas holdup values vary along the length of the column and decrease as the height above the gas distributor plate increases in the transitional and turbulent flow regimes. In the discrete bubbling regime, the values are fairly constant in most of the column length except for a small lower portion where the values are significantly smaller than in the rest of the column. This is due to the formation of gas jets at the orifices of the distributor plate. The holdup values are dependent only on the mangitude of gas velocity and do not depend upon how it is approached, i.e., by increasing or decreasing the flow, in the turbulent-flow regime. This is not the case in the discrete and transitional gas-flow regimes. These characteristic variations in gas holdup are explained on the basis of the formation of bubbles in the lower region of the column and their growth by bubble coalescence prior to acquiring a stable bubble size.

Limited experimental data for the three-phase system (air-water-glass beads) indicate that gas holdup decreases as the concentration of glass beads is increased in the mixutre. This is attributed to the increased buoyancy effect in the presence of glass beads which increases the upthrust and hence the bubble velocity which results in the decrease of gas holdup. Total gas holdup data as a function of superficial gas velocity are compared with the predictions of four commonly used correlations and are also analysed in terms of the sectional measured gas-phase holdup data. The inferences that follow are significant.  相似文献   

20.
The characteristics of gas bubbles in a 5 cm diameter bubble column equipped with a single orifice of 1,3 or 5 mm diameter were investigated under system pressure of 0.1-15 MPa. The formation of gas bubbles was strongly affected by the system pressure. Under high pressures a dispersed gas jet was formed at gas velocities where spherical gas bubbles would have been formed at atmospheric pressure. The critical gas velocity between the bubbling regime and the jetting regime was correlated with the liquid phase Weber number and the gas phase Reynolds number based on the gas velocity at the orifice. Bubble size and gas holdup in the main part of the bubble column were also affected by the bubble formation pattern at the distributor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号