首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水解-气浮-曝气生物滤池工艺在印染废水处理中的应用   总被引:15,自引:1,他引:14  
刘建广 《给水排水》2001,27(2):43-45
采用水解 气浮 曝气生物滤池工艺处理印染废水的运行结果表明 :在原废水COD为830mg/L ,色度为 560倍 ,BOD为 2 90mg/L的条件下 ,其去除率分别为 82 % ,94 %和 93% ,出水达标排放。  相似文献   

2.
In this paper, experimental studies were performed on a simulated reactive dyebath effluent to compare coagulation-flocculation and Fenton's oxidation with electrocoagulation using stainless steel (SS 304) and aluminium electrodes in terms of colour and COD removals as well as AOX formation potential and improvement of biological treatability. Results have indicated that FeCl3 and alum coagulation had little effect on colour removal whereas comparable colour removal efficiencies with those of electrocoagulation with steel electrodes and Fenton's oxidation were attained by FeSO4 coagulation. Almost complete colour removals accompanied with 77% COD abatement were obtained by both electrocoagulation with steel electrodes and Fenton's oxidation under optimised reaction conditions. Although electrocoagulation with aluminium electrodes yielded very limited colour removal and produced a high amount of sludge upon extended reaction time, this application brought about a marked improvement in biodegradability.  相似文献   

3.
This study was conducted to evaluate the treatability of OMW (olive mill wastewater) with sewage and sewage sludge, which could supplement nutrients and microbes required for OMW treatment and reduce its possible toxicity. The amount of OMW added to an aeration tank was based on the loading difference between the designed and actual COD loads, while the amount added to anaerobic digestion for energy recovery was determined by CH4 production. The COD removal efficiencies were 70-85% for both systems. Compost of OMW with dried sewage sludge also showed a similar temperature profile without OMW addition. This strongly suggested that OMW can be treated at a sewage plant without pretreatment and the treated effluent can be reused in irrigation for an arid region.  相似文献   

4.
The efficiency of ozone as a pre- and post-treatment to UASB treatment was investigated, followed by a study into UASB reactor performance with ozonated wastewater as substrate. Combinations of pre- and/or post-ozonation with UASB treatment gave better results than ozonation or UASB alone and COD reductions of 53.0-98.9% were achieved for treatment of canning and winery wastewaters. A UASB reactor was fed with pre-ozonated cannery wastewater for over 70 d. COD removal improved from between 58.8 and 64.4% to between 85.3 and 91.8% after pre-ozonated substrate feed commenced. Subsequent increases in organic loading rate (OLR) from 2.4 to 3.4 kgCOD m(-3) x d(-1) did not affect reactor performance. By including a final post-ozonation treatment to this UASB effluent a total COD reduction of 99.2% was achieved.  相似文献   

5.
Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.  相似文献   

6.
Systematic monitoring of raw leachates (RL) from the operating landfill "Khmet'yevo" during December, 2001--June, 2002 with regard to heavy metals (HM) revealed that these RL were moderately contaminated with Fe, Zn, Pb and Cd (Cu is present in non-dangerous concentrations). This contamination depends on season--the winter leachates are less polluted compared to the summer ones. For removal of HM together with removal of bulk COD, the UASB reactors were applied where, besides elimination of the major part of organic matter, concomitant precipitation of HM in the form of insoluble sulphides inside the sludge bed occurred due to development of the process of biological sulphate reduction. Both removal processes were quite efficient even during operation under submesophilic and psychrophilic conditions (20-10 degrees C). The subsequent submesophilic aerobic-anoxic treatment of submesophilic anaerobic effluents led to only 75% of total inorganic N removal due to COD deficiency for denitrification created by a too efficient anaerobic step. On the contrary, psychrophilic anaerobic effluents (richer in COD compared to the submesophilic ones) were more suitable for subsequent aerobic-anoxic treatment giving the total N removal of 95 and 92% at 20 and 10 degrees C, respectively. The final effluent is approaching the current national standards for direct discharge of treated wastewater.  相似文献   

7.
Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.  相似文献   

8.
The aim of this study was to develop the optimum integrated treatment system for slurry type swine wastewater through field testing. Although composting and liquid composting are the most desirable processes to treat swine wastewater, inadequate composting has been blamed as critical non-point source pollutants. In the area with limited crop land and grass land, the most feasible method to handle slurry type swine wastewater would be that the solids portion from the solids/liquid separation process is treated by composting and then the liquid portion is treated by a series of wastewater treatment processes, including physicochemical treatment system and biological nutrient removal systems such as the modified Ludzack Ettinger (MLE) process and MLE process coupled with a membrane, to satisfy the different effluent criteria. When using the appropriate solids/liquid separation system, the removal efficiency of SS, COD(Cr), and TKN was 92.4%, 73.6%, and 46.0%, respectively and the amount of bulking agent required for composting and organic loading rate for the following wastewater treatment system can be reduced by 94.8% and 84.7%, respectively. When treating the effluent from solids/liquid separation process by MLE process, the optimal volume fraction for denitrification was 20% of total reactor volume and the optimum ratio of F/M and F(N)/M were increased with increase of C/N ratio. Since the effluent quality of MLE process is not enough to discharge, the DAF process was operated with addition of FeCl3 and cationic polyelectrolyte. The effluent from the DAF process was treated in the MLE process coupled with a crossflow ultrafiltration membrane to satisfy more stringent effluent criteria. When external carbon source is added to keep 6.0 of C/N ratio, the efficiency of denitrification is best. The optimum linear velocity and transmembrane pressure for MBR process was 1.8 m/sec and 2.1 atm, respectively. By addition of external carbon source, nitrogen compounds, especially NOx-N, were considerably removed. And by addition of powdered activated carbon, the removal efficiency of COD(Cr) and COD(Mn) and the membrane flux were increased dramatically.  相似文献   

9.
An algal-bacterial consortium was tested for the treatment from a coke factory. A Chlorella vulgaris strain and a phenol-degrading Alcaligenes sp. were first isolated from the wastewater treatment plant to serve as inocula in the subsequent biodegradation tests. Batch tests were then conducted with samples from the real wastewater or using a synthetic wastewater containing 325 mg phenol/l and 500 mg NH4+/l as target pollutants. Direct biological treatment of the real wastewater was not possible due to the toxicity of organic compounds. Activated carbon adsorption and UV(A-B)-irradiation were efficient in detoxifying the effluent for subsequent biological treatment as inoculation of pretreated samples with the algal-bacterial consortium was followed by complete phenol removal and NH4+ removal of 45%. Complete phenol removal and 33% NH4+ removal were achieved during the fed-batch treatment of artificial wastewater at 6 d hydraulic retention time (HRT). Under continuous feeding at 3.6 d HRT, phenol and NH4+ removal dropped to 58 and 18%, respectively. However, complete phenol removal and 29% NH4+ removal were achieved when 8 g NaHCO3/l was added to the artificial wastewater to enhance algal growth. This study confirms the potential of solar-based industrial wastewater treatment based on solar-based UV pretreatment followed by algal-bacterial biodegradation.  相似文献   

10.
The anaerobic treatability of purified terephthalic acid (PTA) wastewater in a novel, rapid mass-transfer fluidized bed reactor using brick particles as porous carrier materials was investigated. The reactor operation was stable after a short 34 day start-up period, with chemical oxygen demand (COD) removal efficiency between 65 and 75%, terephthalate (TA) removal efficiency between 60% and 70%, and system organic loading rate (OLR) increasing from 7.37 to 18.52 kg COD/m(3) d. The results demonstrate that the reactor is very efficient, and requires a low hydraulic retention time (HRT) of 8 h to remove both TA and COD from the high-concentration PTA wastewater. The system also has high resistance capacity to varied OLR.  相似文献   

11.
棉浆粕废水组分较为复杂,治理具有一定的技术难度,采用两相厌氧、序批式活性污泥法和物化处理组合工艺取得了较好的效果。生产运行结果表明:SBR工艺对COD,BOD的去除效率分别达到40%~57%和55%~70%。在水温自然变化情况下,测定了好氧SBR单元的生化动力学参数,并与已有文献报道的纸浆和造纸废水的测定结果进行了比较,表明棉浆粕废水经两相厌氧处理后的出水更易于生化处理,但仍属较难好氧生化处理废水。  相似文献   

12.
One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165+/-24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26 degrees C) and mesophilic (35 degrees C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L.d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.  相似文献   

13.
A pilot-scale fluidised pellet bed (FPB) bioreactor, which combines chemical coagulation, biological degradation, particle pelletisation and separation in one unit, was applied for onsite wastewater treatment and reuse. As a result of rational use of inorganic coagulant and organic polymer and moderate mechanical agitation, spherical particles were generated in the upflow column and a well-fluidised bed was formed. With a continuous supply of dissolved oxygen through a recycling loop, an aerobic condition was kept in the bottom section of the FPB column. Under such conditions the pellets in the FPB column showed the following characteristics: (1) compact structure and high density; (2) rich in microorganisms; and (3) high MLSS and MLVSS concentrations. Therefore, the FPB bioreactor achieved more than 90% removal of SS, COD, BOD and TP from raw domestic wastewater within a total hydraulic retention time (HRT) of only about 30 minutes. It also showed nitrification and denitrification ability and the TN removal could be about 50% as the recycling ratio was increased to 1:1. The treated water quality is generally competitive with the secondary effluent from a conventional activated sludge process. With these advantages the FPB bioreactor is recommendable as a compact system for onsite wastewater treatment and reuse.  相似文献   

14.
This paper compares the conceptual design of anaerobic treatment alternatives for brandy distillery process water from the production of wine, brandy, high proof alcohol, and cleanup activities that will be land applied. The results of process water characterization and treatability testing are included. The wine industry's sustainable practices movement and recent tightening of the State of California requirements for land application of food and beverage processing wastewater, have forced facilities to reevaluate the characteristics, segregation options, and treatability requirements for recycling, reuse, or discharge of effluent to land treatment facilities. The treatment alternatives, results of characterization, and bench- and pilot-scale treatability testing for solids, organics, and nutrient removal using anaerobic and aerobic biological and physical-chemical treatment methods are presented. Based on test results and evaluation, we developed a conceptual design and cost estimates for process water treatment systems to remove solids, organics and nutrients that include energy recovery and produce effluent of improved quality for land application.  相似文献   

15.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

16.
The leather industry is well known as a high consumer of water (30 to 80 m3 for 1 ton of processed raw skins). At the same time this industry is known for the: high specific pollution of wastewater. The main characteristics of tannery wastewater are: high salinity, high organic loading (COD, BOD5), high content of ammonia and organic nitrogen. and presence of specific pollutants (sulphide, chromium).The largest Slovenian tannery (IUV Vrhnika) processing 40 to 50 t of pig skins daily has a good system of physico-chemical pre-treatment of their wastewater (coagulation and flocculation with AI-sulfate and anionic polyelectrolyte). In pre-treatment, about 60% of organic substances are removed (COD and BOD5) and above 95% of sulfide and chromium. Concerning Siovenian regulations and taking into consideration the fact that this tannery is located on the relatively small and slowly running river Ljubljanica such pretreatment is not sufficient. The company would like to supplement pre-treatment with biological treatment.Laboratory and pilot scale feasibility experiments including conventional biological treatment with activated sludge and combined anaerobic-anoxic-aerobic treatment with fixed biomass using mechanical pretreated wastewater and pretreated wastewater with flotation were performed. It became clear that effective biological treatment requires long retention times (several days) for applicable effluent.  相似文献   

17.
The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.  相似文献   

18.
The recently proposed DEAMOX (DEnitrifying AMmonium OXidation) process combines the anammox reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper firstly presents a feasibility study of the DEAMOX process using synthetic (ammonia + nitrate) wastewater where sulphide is replaced by volatile fatty acids (VFA) as a more widespread electron donor for partial denitrification. Under the influent N-NH+4/N-NO3(-) and COD/N-NO3(-) ratios of 1 and 2.3, respectively, the typical efficiencies of ammonia removal were around 40% (no matter whether a VFA mixture or only acetate were used) for nitrogen loading rates (NLR) up to 1236 mg N/l/d. This parameter increased to 80% by increasing the influent COD/N-NO3(-) ratio to 3.48 and decreasing the influent N-NH4 +/N-NO3(-) ratio to 0.29. As a result, the total nitrogen removal increased to 95%. The proposed process was further tested with typical strong nitrogenous effluent such as reject water (total N, 530-566 mg N/l; total COD, 1530-1780 mg/l) after thermophilic sludge anaerobic digestion. For this, the raw wastewater was split and partially ( approximately 50%) fed to a nitrifying reactor (to generate nitrate) and the remaining part ( approximately 50%) was directed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance up to NLR of 1,243 mg N/l/d in the DEAMOX reactor was achieved resulting in 40, 100, and 66% removal of ammonia, NOx(-), and total nitrogen, respectively.  相似文献   

19.
The aim of this work is to analyse the biological performances of two immersed membranes bioreactors focusing on the biomass adaptation to complex substrate degradation and the performance in term of permeate quality. Two influents were selected: a synthetic complex influent (acetate/Viandox, MBR1) and a real seafood processing wastewater (surimi product, MBR2). The MBR systems were operated for long periods without any sludge extraction except for sampling. Organic matter removal, sludge production and quality of the treated wastewater were analysed and studied. COD removal efficiencies after a period of biomass adaptation were higher than 97% and 95% for the synthetic and real wastewater respectively. In both cases, the COD of the treated wastewater was lower than 50 mg.L(-1). In spite of salt concentration in the real wastewater a biomass adaptation process occurs. In the overall operational period, a 0.058 gCOD P.gCOD T(-1) and a 0.12 gCOD P.gCOD T(-1) observed sludge yields were obtained for the MBR1 and MBR2 respectively. These values are approximately 5 to 10 times lower than those measured in conventional activated sludge process. These results showed that the presence of particular and some of non-easily degradable compounds in the influent of MBR2 didn't limit the performance of MBR in term of COD removal achieved. The results have also confirmed the excellent permeate quality for water reuse from MBRs systems.  相似文献   

20.
This paper describes the demonstrative scale application of a membrane biological reactor (MBR) for low loaded domestic wastewater with low attitude to biological treatment (carbon/nitrogen approximately 5). The biological process was managed by the automatically controlled alternate cycles allowing for re-use purposes with a remarkable reduction of the operational costs. The global process evaluation revealed the system capability of obtaining high nitrogen removal (effective nitrogen removal of 69%) thanks to its high flexibility related to the hourly loading fluctuation. Moreover, high removal of heavy metals and polycyclic aromatic hydrocarbons (PAH) was obtained due to the perfect retention capability of the membranes. In-depth studies were conducted to determine the process behaviour for activated sludge over aeration and with addition of exogenous carbon. Limitation of sludge over aeration and energy savings were observed with a gradient air supplying method. The addition of exogenous carbon (acetic acid up to carbon/nitrogen approximately 9) led to complete nitrogen removal (Ed = 96%) and permitted biological phosphorus uptake. In conclusion, it was been found that the coupled process alternated cycles-MBR had the capacity to remove COD, BOD, N, P and suspended solids, as well as heavy metals and organic micropollutants, resulting in high quality effluent suitable for re-use purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号