首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Normal rats showed faster inhibitory learning about a light conditioned stimulus (CS) if it had previously been an inconsistent predictor of a tone CS than if it had been a consistent predictor of the tone. In contrast, the inhibitory learning of rats with ibotenic acid lesions of the amygdala central nucleus (CN) was unaffected by the prior predictive value of the light. These results support claims that the CN is critical to surprise-induced enhancement of attentional processing of CSs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an impaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS + significantly less often than controls, failing to discriminate between the CS + and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
There is considerable evidence that the basolateral complex of the amygdala (ABL) is involved in learning about the motivational value of otherwise neutral stimuli. The authors examined the role in this function of the ABL and one of its major efferent structures, the nucleus accumbens. Male Long-Evans rats received either sham, ipsilaterally. or contralaterally placed unilateral lesions of the ABL and accumbens and were trained in an appetitive Pavlovian second-order conditioning task. Sham-lesioned and ipsilaterally lesioned rats acquired the task normally, but contralaterally lesioned rats, in which the ABL and accumbens were functionally disconnected, failed to acquire second-order conditioned responses (although they did acquire second-order conditioned orienting responses). The results suggest that the ABL and accumbens are part of a system critical for processing information about learned motivational value. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The authors have recently demonstrated that rats with basolateral amygdala (BLA) lesions acquire Pavlovian fear conditioning after overtraining. However, it is not known whether the associative basis of Pavlovian fear memory acquired by rats with BLA lesions is similar to that of intact rats. Associations are typically formed between the conditional (CS) and unconditional (US) stimuli (stimulus-stimulus; S-S), although it is possible for stimuli to enter into association with the responses they produce (stimulus-response; S-R). Indeed, the central nucleus of the amygdala, which is essential for fear conditioning in rats with BLA lesions, may mediate S-R associations in some Pavlovian tasks. The authors therefore used a postconditioning US inflation procedure (i.e., exposure to intense footshock USs) to assess the contribution of S-S associations to fear conditioning after overtraining in rats with BLA lesions. In Experiment 1, intact rats that were overtrained and later inflated displayed elevated freezing levels when tested, indicating that S-S associations contribute to overtrained fear memories. Interestingly, neither neurotoxic BLA lesions nor temporary inactivation of the BLA during overtraining prevented the inflation effect (Experiment 2 and 3, respectively). These results reveal that S-S associations support Pavlovian fear memories after overtraining in both intact rats and rats with BLA lesions, and imply that the central nucleus of the amygdala encodes CS-US associations during fear conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The authors showed that conditional effects of the stimulation environment modulate both the ictal and interictal behaviors of rats subjected to amygdala kindling. Rats received 53 stimulations to the left basolateral amygdala in 1 conditional stimulus (CS) context (CS+) and 53 sham stimulations (the stimulation lead was attached but no current was delivered) in another context (CS-), quasirandomly over 54 days. Three kinds of conditional effects were observed, First, after several stimulations, less ambulatory activity, more freezing, and less rearing reliably occurred in the CS + context than in the CS context. Second, after 45 stimulations, all of the rats chose the CS - context over the CS + context in a conditioned place preference test. Third, when the rats were finally stimulated in the CS- context, their motor seizures were less severe: Latencies were longer, motor seizures were shorter, convulsive patterns were of a lower class, and there were fewer falls. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The central nucleus of the amygdala (CeA) has been implicated in a range of associative learning phenomena often attributed to changes in attentional processing of events. Experiments using a number of behavioral tasks have shown that rats with lesions of CeA fail to show the enhancements of stimulus associability that are normally induced by the surprising omission of expected events. By contrast, in other tasks, rats with lesions of CeA show normal enhancements of associability when events are presented unexpectedly. In this experiment, we examined the effects of CeA lesions on changes in cue associability in a reward timing task. In sham-lesioned rats, the associability of cues that were followed by stimuli that provided reward timing information was maintained at higher levels than that of cues that were followed by uninformative stimuli. Rats with lesions of CeA failed to show this advantage. These results indicate that the role of CeA in the modulation of associability is not limited to cases of event omission. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

7.
The basal forebrain cholinergic system is broadly implicated in the regulation of attention. Disruptions in the function of this system produce impairments in many attentional functions, including the performance of well-learned responses under increased attentional load and the surprise-induced enhancement of learning rate. Similarly, lesions of the amygdala central nucleus (CeA) have been found to impair attentional function in some circumstances. In the present article, the effects of lesions that disconnected CeA from the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) on performance are examined in a modified 5-choice serial reaction time (5CSRT) task, thought to assess selective or sustained attention. The lesions impaired performance under conditions of increased attentional load, suggesting that a circuit that includes CeA and SI/nBM regulates these aspects of attention. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Rats with neurotoxic lesions of basolateral amygdala (ABL) and control rats showed comparable enhancement of attentional processing of a visual stimulus when its predictive value was altered. In contrast, lesioned rats showed less potentiation of eating than did control rats when food was available during presentations of a conditioned stimulus that was previously paired with food. When considered together with previous data, these results indicate a double dissociation between effects of lesions of the ABL and of the amygdala central nucleus on phenomena related to attentional processing and the acquisition of motivational value. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
In Pavlovian appetitive conditioning, rats often acquire 2 classes of conditioned responses: those whose form is determined by the reinforcer, and those whose form is determined by characteristics of the conditioned stimulus (CS). Consistent with the results of previous lesion studies, reversible inactivation of amygdala central nucleus function during pairings of an auditory CS with food prevented the acquisition of conditioned orienting responses specific to auditory CSs, whereas food-related conditioned behaviors were acquired normally. Neither inactivation nor posttraining neurotoxic lesions of the central nucleus affected the expression of previously acquired conditioned orienting. Thus, although the central nucleus is critical to the acquisition of information required for conditioned orienting to auditory cues, it is not needed for maintaining this information for later use. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Nucleus accumbens (NAcc) core lesions were performed either before or after Pavlovian aversive conditioning. NAcc core lesions had no effect on discrete-cue or contextual conditioned freezing during acquisition. During retention testing, neither pre- nor posttraining lesions had any effect on conditioned freezing to the discrete cue. However, pretraining lesions resulted in a profound impairment of contextual conditioned freezing in a retention test, and posttraining lesions resulted in a smaller impairment. NAcc core lesions had no effect on sensory or motor processes, as measured by shock reactivity and spontaneous locomotor activity. These results suggest that during acquisition, processes independent of the NAcc core mediate contextual conditioned freezing, but that the NAcc is implicated in the retention of this aversive memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In 2 T-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on (1) effortful choices in which rats could climb a barrier for a high reward or select a low reward with no effort and (2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

12.
To investigate the contribution of the anterior cingulate cortex (ACC) to stimulus-reward learning, rats with lesions of peri- and postgenual ACC were tested on a variety of Pavlovian conditioning tasks. Lesioned rats learned to approach a food alcove during a stimulus predicting food, and responded normally for conditioned reinforcement. They also exhibited normal conditioned freezing and Pavlovian-instrumental transfer, yet were impaired at autoshaping. To resolve this apparent discrepancy, a further task was developed in which approach to the food alcove was under the control of 2 stimuli, only 1 of which was followed by reward. Lesioned rats were impaired, approaching during both stimuli. It is suggested that the ACC is not critical for stimulus-reward learning per se, but is required to discriminate multiple stimuli on the basis of their association with reward. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Many associative learning theories assert that the predictive accuracy of events affects the allocation of attention to them. More reliable predictors of future events are usually more likely to control action based on past learning, but less reliable predictors are often more likely to capture attention when new information is acquired. Previous studies showed that a circuit including the amygdala central nucleus (CEA) and the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) is important for both sustained attention guiding action in a five-choice serial reaction time (5CSRT) task and for enhanced new learning about less predictive cues in a serial conditioning task. In this study, the authors found that lesions of the cholinergic afferents of the medial prefrontal cortex interfered with 5CSRT performance but not with surprise-induced enhancement of learning, whereas lesions of cholinergic afferents of posterior parietal cortex impaired the latter effects but did not affect 5CSRT performance. CEA lesions impaired performance in both tasks. These results are consistent with the view that CEA affects these distinct aspects of attention by influencing the activity of separate, specialized cortical regions via modulation of SI/nBM. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Decreased oxytocin levels in the amygdalas of rat dams following chronic gestational cocaine exposure have been correlated with heightened maternal aggressive behavior. In this experiment, drug-naive dams were implanted with bilateral cannulas into the central nucleus of the amygdala (CNA) or control area and infused with 1,000 or 500 ng of an oxytocin antagonist (OTA) or buffer, 4 hr before testing. Behavior was compared among dams infused with OTA into target areas just outside the CNA and cocaine-treated dams (infused with buffer). Dams infused with 1,000 ng OTA attacked intruders significantly more often than buffer-infused dams. OTA did not affect other behaviors, suggesting that disruption of oxytocin activity in the CNA may be sufficient to selectively alter maternal aggressive behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
In this study, the authors tested the hypothesis that the basolateral amygdala (BLA), orbitofrontal cortex (OFC), nucleus accumbens core (NA-core), and the extended hippocampus mediate different aspects of the development-maintenance of unique reward expectancies produced by the differential outcomes procedure (DOP). Rats were trained with either DOP or a nondifferential outcomes procedure (NOP) on a simple discrimination task. Fornix lesions did not affect either version of the task, demonstrating that the extended hippocampal system has no role in stimulus-outcome (S-O) associations. In contrast, in the DOP condition, BLA lesions impaired performance throughout training, OFC lesions impaired choice accuracy only in the later maintenance phase, and NA-core lesions resulted in enhanced learning. These results suggest that BLA and OFC are important for establishment (BLA) and behavioral maintenance (OFC) of S-O associations, whereas the NA-core is not needed and can in fact impede using multiple S-O associations. No impairments were observed in the NOP condition, demonstrating that these structures are not critical to stimulus-response learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
The current view of instrumental conditioning indicates that performance in the early stage of training is maintained by a representation of the outcome, as indexed by its sensitivity to changes in the value of the reward. In the present study, the authors tested the effects of a disconnection of the prelimbic cortex (PL) and the basolateral nucleus of the amygdale (BLA), using an asymmetric lesion procedure, to determine whether these structures interact sequentially as part of a corticolimbic system. In marked contrast to the effects of bilateral lesions of the PL or the BLA, which both altered rats' sensitivity to outcome devaluation, the disconnection of these 2 brain areas was without an effect on outcome devaluation. These results demonstrate that the PL and the BLA mediate different aspects of outcome representation in goal-directed responding. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The effects of posttraining excitotoxic lesions of the pedunculopontine tegmental nucleus (PPTg) on two-way active avoidance after changing the conditioned stimulus (CS) used during prelesion training were examined. Prelesion training was carried out with either a tone or a light as the CS, and this CS was changed during postlesion training. Replacing the tone with a light reduced the performance of control and lesioned rats, but the degree of reduction was higher in the latter. Replacing the light with a tone had slight detrimental effects in lesioned rats but not in controls. Thus, posttraining PPTg lesions slowed down the reacquisition of shuttle-box avoidance under conditions of CS transfer, an effect that may be attributable to disruption of attention and/or gating of sensory stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
After electrolytic lesions to the cortical and adjacent amygdaloid subnuclei, thresholds for rewarding medial forebrain bundle (MFB) stimulation were tracked in 19 rats with bilateral implants and 8 with single implants. Results were categorized into 3 groups depending on the magnitude of the lesion effect on ipsilateral frequency thresholds: substantial (> 60%), small (> 26%), or none (  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号