首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hip joint diseases have various kinds of origination, and they have multifarious forms according to the originations. One of the major concerns to plan the surgical operation for the hip diseases is the alternation of biomechanical environment, such as joint force and contact pressure. In this study, we analyzed the biomechanical effects of surgical techniques of the hip joint diseases by finite element analysis. We developed the finite element models of the pre-operative and post-operative hip joints for four children patients who have hip joint disease with abnormal joint anatomy. The models consist of two bones (pelvis and femur) reconstructed from CT images, and the articular cartilages on acetabulum and femoral head. Bones and cartilages were assumed having linear elastic material properties. The resultant joint force and the abductor force were calculated from 3-D static equilibrium in one-leg standing position. The calculated joint force was applied on the pelvis, the inferior plate of femur was fixed in all directions, and the medial edge of pelvis was constrained in vertical direction. Mechanical values such as contact force, pressure, and contact area on the hip joint were measured. The results of the finite element analysis were similar with those clinically estimated. The present non-destructive biomechanical evaluation method could be clinically useful for the optimal planning and selecting of surgical method by the rearrangement of contact pressure in the hip joint.  相似文献   

2.
以自主研制的75 MPa,2.5 m3大容积全多层高压储氢容器为对象,开展了封头和筒体连接结构强度试验研究,得到了加强箍、封头及其连接部位应力随容器内压力的变化情况。建立了精度较高的大容积全多层高压储氢容器封头和筒体连接结构弹塑性有限元分析模型。基于该模型,对封头和筒体连接结构在容器超压过程中的变形特征,及封头与加强箍配合面形成裂纹尖端在多次加载时的稳定性进行了分析,验证了加强箍结构设计方法的合理性。  相似文献   

3.
In the present study, Low Plasticity Burnishing (LPB®) process on the half-space specimen has been simulated using a 3D explicit nonlinear finite element model. The developed finite element model is then used to investigate the effect of main parameters including ball diameter, burnishing force, burnishing feed, and number of passes on the resultant profile of residual stress and plastic deformation. Due to high computational cost associated with the nonlinear finite element model and in order to practically conduct design optimization of the LPB process, the design of experiment combined with the response surface methodology has been used to develop smooth response functions to efficiently and accurately approximate the residual stress profile and plastic deformation over the entire design space. Finally in order to improve the LPB process, a design optimization using the developed response functions has been formulated to obtain the optimum set of parameters such that a deep residual compressive stress with small plastic deformation is generated throughout the thickness of component.  相似文献   

4.
Previous research has demonstrated that the number of degrees of freedom (DOF) modelled at a given joint affects the antagonistic muscle activity predicted by inverse dynamics optimization techniques. This higher level of muscle activity in turn results in greater joint contact forces. For instance, modelling the knee as a 3 DOF joint has been shown to result in higher hip and knee joint forces commensurate with a higher level of muscular activity than when the knee is modelled with 1 DOF. In this study, a previously described musculoskeletal model of the lower limb was used to evaluate the sensitivity of the knee and hip joint contact forces to the DOF at the knee during vertical jumping in both a 1 and a 3 DOF knee model. The 3 DOF knee was found to predict higher tibiofemoral and hip joint contact forces and lower patellofemoral joint contact forces. The magnitude of the difference in hip contact force was at least as significant as that found in previous research exploring the effect of subject-specific hip geometry on hip contact force. This study therefore demonstrates a key sensitivity of knee and hip joint contact force calculations to the DOF at the knee. Finally, it is argued that the results of this study highlight an important physiological question with practical implications for the loading of the structures of the knee; that is, the relative interaction of muscular, ligamentous, and articular structures in creating moment equilibrium at the knee.  相似文献   

5.
The stiffness of articular cartilage increases dramatically with increasing rate of loading, and it has been hypothesized that increasing the stiffness of the subchondral bone may result in damaging stresses being generated in the articular cartilage. Despite the interdependence of these tissues in a joint, little is understood of the effect of such changes in one tissue on stresses generated in another. To investigate this, a parametric finite element model of an idealized joint was developed. The model incorporated layers representing articular cartilage, calcified cartilage, the subchondral bone plate and cancellous bone. Taguchi factorial design techniques, employing a two-level full-factorial and a four-level fractional factorial design, were used to vary the material properties and thicknesses of the layers over the wide range of values found in the literature. The effects on the maximum values of von Mises stress in each of the tissues are reported here. The stiffness of the cartilage was the main factor that determined the stress in the articular cartilage. This, and the thickness of the cartilage, also had the largest effect on the stresses in all the other tissues with the exception of the subchondral bone plate, in which stresses were dominated by its own stiffness. The stiffness of the underlying subchondral bone had no effect on the stresses generated in the cartilage. This study shows how stresses in the various tissues are affected by changes in their mechanical properties and thicknesses. It also demonstrates the benefits of a structured, systematic approach to investigating parameter variation in finite element models.  相似文献   

6.
对金刚石砂轮精密平面磨削纳米结构WC/12Co涂层的磨削表面残余应力进行有限元模拟,忽略相变影响,基于ANSYS平台,利用ANSYS参数设计语言完成建立模型、给定材料属性、划分单元、加载和求解整个过程。对纳米结构WC/12Co涂层表面磨削残余应力进行试验研究,通过改变磨削条件得到不同磨削条件下残余应力的变化规律。将试验结果与相同磨削条件下的有限元模拟结果进行对比,发现试验结果与有限元模拟结果是一致的,证明了有限元模型的正确性。  相似文献   

7.
A 3D finite element (FE) model of an implanted pelvis was developed as part of a project investigating an all-polymer hip resurfacing design. The model was used to compare this novel design with a metal-on-metal design in current use and a metal-on-polymer design typical of early resurfacing implants. The model included forces representing the actions of 22 muscles as well as variable cancellous bone stiffness and variable cortical shell thickness. The hip joint reaction force was applied via contact modelled between the femoral and acetabular components of the resurfacing prosthesis. Five load cases representing time points through the gait cycle were analysed. The effect of varying fixation conditions was also investigated. The highest cancellous bone strain levels were found at mid-stance, not heel-strike. Remote from the acetabulum there was little effect of prosthesis material and fixation upon the von Mises stresses and maximum principal strains. Implant material appeared to have little effect upon cancellous bone strain failure with both bended and unbonded bone-implant interfaces. The unbonded implants increased stresses in the subchondral bone at the centre of the acetabulum and increased cancellous bone loading, resembling behaviour obtained previously for the intact acetabulum.  相似文献   

8.
Concentric and eccentric shoulder rehabilitation biomechanics   总被引:1,自引:0,他引:1  
The use of an impulse-momentum (IM) exercise technique was investigated for end-stage shoulder rehabilitation. The objectives of this study were to: (a) quantify the net shoulder joint forces and moments while using an IM system and (b) test the influence of gender and muscle loading type (concentric or eccentric) on kinetic and kinematic parameters. Fourteen healthy adults (eight males, six females) performed a repeated measures experiment on an instrumented device utilizing a cabled shuttle system. While maintaining 90 degrees of shoulder abduction and 90 degrees of elbow flexion, the subjects externally rotated their upper arm from 0 degrees to 90 degrees (concentric acceleration) and then internally rotated their upper arm back from 90 degrees to the 0 degrees position (eccentric deceleration). Shoulder joint forces and moments as well as rotational work and power were calculated using inverse dynamics (free-body forces and moments calculated at intersegmental joint centres). Overall concentric peak forces and moments were greater than eccentric peak forces and moments (P < 0.0001). Joint forces and moments reached a maximum during the initial phase of concentric loading (0 degrees to 45 degrees) compared with any other rotational position in the loading cycle (concentric 45 degrees to 90 degrees or eccentric 90 degrees to 0 degrees). The results also indicate that males experienced higher (P < 0.0001) average resultant peak joint forces (concentric 0 degrees to 45 degrees = 108.0 N and eccentric 90 degrees to 45 degrees = 87.2 N) than females (concentric 0 degrees to 45 degrees = 74.7 N and eccentric 45 degrees to 0 degrees = 56.0 N). In addition, males experienced higher (P < 0.0001) average resultant peak joint moments (concentric 0 degrees to 45 degrees = 30.4 N m and eccentric 45 degrees to 0 degrees = 21.0 N m) than females (concentric 0 degrees to 45 degrees = 19.7 N m and eccentric 45 degrees to 0 degrees = 12.8 N m).  相似文献   

9.
Polymers such as polymethyl-methacrylate (PMMA) surgical cement undergo elastic and viscoelastic deformation (creep) in response to physiological cyclic loading. Theoretically, the effect of gradual creep deformation on the stresses, strains, and displacements of a prosthetic joint can be evaluated by running a finite element analysis (FEA) model through a large number of loading cycles. However, with complex (i.e. realistic) models, this approach may require extensive computational time, and may accumulate unacceptably large numerical errors over the many iterations of the model. The present study utilized a Fourier series to represent a periodic stress and incorporated it in the linear viscoelastic constitutive equation. It was demonstrated that, for a linear viscoelastic material, the time average (i.e. the constant in the Fourier series) of the cyclic stress determined the accumulated creep strain and the sinusoidal components of the stress produced the periodic creep strain with a zero average and negligible amplitude. For a geometrically linear FEA model, the solution based on a cyclic stress can be readily applied to an external cyclic load, that is, the creep strain is determined by the time average of the cyclic load. While femoral component models were considered as geometrically non-linear, an FEA model of a femur implanted with an Exeter hip prosthesis showed that there was only a minor difference between the profile of the applied sinusoidal load and that of the resulting displacement. In such cases, applying the time average of a cyclic load to calculate the resulting creep strain with a given duration of loading should expect to provide acceptable accuracy, with a marked reduction in the computational time.  相似文献   

10.
High-speed machining (HSM) may produce parts at high production rates with substantially higher fatigue strengths and increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the round cutting tool edge associated with induced stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. Cutting edge roundness may induce stress and temperature fields on the machined subsurface and influence the finished surface properties, as well as tool life. In this paper, a finite element method (FEM) modeling approach with arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analysis is employed. In order to realistically simulate HSM using edge design tools, an FEM model for orthogonal cutting is designed, and solution techniques such as adaptive meshing and explicit dynamics are performed. A detailed friction modeling at the tool–chip and tool–work interfaces is also carried out. Work material flow around the round edge cutting tool is successfully simulated without implementing a chip separation criterion and without the use of a remeshing scheme. The FEM modeling of the stresses and the resultant surface properties induced by round edge cutting tools is performed for the HSM of AISI 4340 steel. Once FEM simulations are complete for different edge radii and depths of cut, the tool is unloaded and the stresses are relieved. Predicted stress fields are compared with experimentally measured residual stresses obtained from the literature. The results indicate that the round edge design tools influence the stress and temperature fields greatly. An optimization scheme can be developed to identify the most desirable edge design by using the finite element analysis (FEA) scheme presented in this work.  相似文献   

11.
考虑弯曲效应的混元胶接单搭接头应力模型   总被引:7,自引:2,他引:5  
赵波 《机械工程学报》2008,44(10):129-137
混元胶接接头是利用多种不同剪切弹性模量的胶层来传递被粘物载荷的单搭接头。它兼具胶层连续性连接和降低端头应力集中等优点,因此能充分利用被粘物材料性能(如复合材料)以提高接头强度。以典型双元胶接接头为对象,考虑加载作用线偏心引起的弯曲效应和胶层剥离正应力,建立被粘物为各向同性的线弹性双元胶接接头应力解析模型。理论模型中的胶层切应力、剥离正应力和上被粘物纵向正应力与精细有限元模型吻合得较好,证实了理论模型的正确性。参数研究中确定了影响混元胶层应力分布的关键耦合参数。  相似文献   

12.
An optimal design formulation is developed to reduce undesirable dynamic effects due to clearance at a joint. The objective function to be minimized is the maximum ratio of the rate of change of the joint force direction ( ) to the magnitude of the joint force (R), i.e. max ( ) as calculated from the nominal mechanism without clearances. Design variables are the magnitude and the location of an added mass attached to each link.

Numerical examples for an offset slider crank mechanisms are considered. To check suitability of the objective function, the initial and optimized systems are simulated dynamically by integrating the system model equations and the phenomena of contact loss compared. It is found that although max ( ) is not a function of the magnitude of clearances and not of dimensionless form, it is a reasonable indicator of the contact loss phenomena for the single clearance system considered. The input torques have also been obtained and compared, shown to be more uniform in the optimized system.  相似文献   


13.
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann’s model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann’s model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann’s model.  相似文献   

14.
The question is considered of the relationship between the divergence of a longitudinal (400 mm) groove in the rail web, used as an indirect residual-stress–based rejection criterion, with internal stresses measured by acoustic strain gaging across the rail section. The internal stresses have also been evaluated in individual rail elements after cutting. A finite element simulation in the COMSOL Multiphysics software environment has been performed in order to establish connection between groove divergence and stresses. Results are presented for experimental measurements over 49 sections of different rails. The relationship is demonstrated between the stress level in rail elements and the level of stresses measured by an electromagnetic-acoustic structuroscope in an experiment on the side of the railhead. Based on the modeling and experimental results, an acoustoelastic technique is proposed for monitoring residual stresses in rails as an expert method with a rejection level of 80 MPa when sounding a rail section on the side of its head.  相似文献   

15.
为了研究涡旋真空泵涡旋齿在气体力作用下的应力分布及变形规律,利用三维建模软件建立双级定涡旋盘有限元分析模型,结合气体流动特性,分析了串联模型两级间气体压力。基于涡旋真空泵涡旋盘的几何理论和力学理论将涡旋齿受到的气体力分解为切向、径向和轴向3个气体力分量,采用有限元分析的方法对双级定涡旋齿进行应力和变形分析。由分析结果可知,吸气侧第一级三头涡旋齿比排气侧第二级单头涡旋齿的变形量小且变形波动小;在4种不同主轴转角下,涡旋齿的最大变形位置均发生在排气腔内,且位于涡旋齿齿顶部,最大等效应力发生在涡旋齿齿根部;得到在气体力作用下涡旋齿的径向变形和轴向变形情况,对真空泵密封的设计提供了一定的理论依据。  相似文献   

16.
The square ring has over the past few years been used as an alternative sealing element to the O-ring, which has been used widely for a long time. The square ring geometry is believed to be especially suitable for axial static applications because its square form remains practically constant under high pressures, has a high resistance to extrusion, not sensitive to gap extrusion and high leak tightness. Some of these fundamental properties that are crucial in the design of a square ring can be justified by analysis of the stress distribution of the square ring under various loading conditions, especially under a combined loading of uniform squeeze and internal pressure. In order to justify these properties a stress frozen square ring under this combined loading condition of uniform squeeze rate and internal pressure was analyzed using the photoelastic experimental hybrid method to obtain the contact and internal stresses. This research confirmed that contrary to the established theory, the square ring extrudes at a lower pressure of 1.96 MPa. The photoelastic experimental hybrid method can adequately be used for stress analysis of square ring seals. Internal pressure plays a significant role in the design of the seals. As the internal pressure increases, the internal stresses also increase. Maximum internal stresses were observed in the region close to the extrusion gap at points 2 and 2??. The square ring experienced contact stress singularity on the upper end of the contact surface (point 2??) on the front side and at point 2 on the upper side. The upper region experienced the largest contact stresses as well as internal stresses and so the fracture criterion of maximum shear stress should be applied in this region.  相似文献   

17.
为研究汽车制动管双扩口管接头在拧紧过程中的密封性能,借助有限元分析方法构建弹塑性材料模型,研究轴向位移载荷对密封性能的影响;分析管接头在拧紧过程的摩擦力矩,得出轴向拧紧力与扭矩的关系公式;结合金属多线性强化模型与ANSYS非线性仿真,分析双扩口管接头在拧紧过程中的应力与接触面压力动态变化过程,通过扭矩高压泄漏性实验验证仿真方法的有效性。结果表明:随着位移载荷的增大,管接头蘑菇头最大应力与变形增大,接触面压力和密封宽度增大,且接触压力分布区域稳定,在接触面上形成两道密封环;而随着位移载荷的增大,蘑菇头厚度逐渐降低,其表面凹陷加深,当位移载荷增大到一定值时,蘑菇头存在被切断的风险。  相似文献   

18.
采用盲孔法测量3组发动机铝合金缸盖裂纹附近和敏感部位的残余应力情况,分析缸盖内的残余应力对其裂纹产生的具体影响。考虑到缸盖的复杂结构特点和选择的测点位置,测试选用钻铣床钻盲孔和铣断通油管及其侧板,并在钻盲孔释放残余应力和铣削过程中通过30通道应变仪DRA-30A记录测点的应变时域曲线。对测试结果的分析和研究表明:通油管部分的残余应力以压应力为主,下缸体的上表面以拉应力为主,这种上压下拉的残余应力分布情况是缸盖内产生裂纹的主要原因;测点4处产生裂纹的可能性较大,测点7处通油管对下缸体的局部拉伸作用最为明显;B90组结构设计和加工工艺在3组试样中最为合理。据此测试结果和研究结论改进产品的结构和工艺后,该种缸盖满足设计要求。  相似文献   

19.
The behaviors and stresses of an O-ring under uniform squeeze rates and internal pressure change with real time. Therefore, the behaviors and stresses of O-rings under uniform squeeze rates and internal pressures should be studied with real time. To achieve this, a loading device for a transparent type photoelastic experiment, through which various internal pressures and uniform squeeze rates are applied, was developed. The validity of the loading device in analyzing the behaviors and stresses of the O-ring under uniform squeeze rates and internal pressures with real time was verified. It was observed that the filling phenomenon of the O-ring into the space between the lower and front side occurred after forcing out continued for a duration of time. The study also indicated that maximum shear stress would be more effective as a fracture parameter than the maximum normal stress fracture criterion for an O-ring made from rubber.  相似文献   

20.
为改善高速列车的横风气动性能,建立高速列车流线型头型的多目标优化设计方法,以横风下高速列车的侧力和升力为优化目标,对高速列车流线型头型进行多目标自动优化设计。建立高速列车流线型头型的参数化模型,提取出5个优化设计变量,利用计算流体动力学方法进行高速列车流场计算,并结合多目标遗传算法,实现横风下高速列车流线型头型的自动寻优设计。通过相关性分析,得到影响侧力和升力的关键优化设计变量,并进一步研究关键优化设计变量和优化目标之间的非线性关系。经过多目标优化设计,获得一系列的Pareto最优头型,这些头型的横风气动性能均得到明显改善。同时为保证无风环境下高速列车的基本气动性能不发生恶化,最终筛选出8个Pareto最优头型。对于这8个Pareto最优头型,相对于原始头型来说,横风下的侧力最多可降低3.06%,横风下的升力最多可降低19.60%,无风时的气动阻力最多可降低4.51%,无风时的气动升力最多可降低9.68%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号