首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polarized HepG2 cells, the fluorescent sphingolipid analogues of glucosylceramide (C6-NBD-GlcCer) and sphingomyelin (C6-NBD-SM) display a preferential localization at the apical and basolateral domain, respectively, which is expressed during apical to basolateral transcytosis of the lipids (van IJzendoorn, S.C.D., M.M. P. Zegers, J.W. Kok, and D. Hoekstra. 1997. J. Cell Biol. 137:347-457). In the present study we have identified a non-Golgi-related, sub-apical compartment (SAC), in which sorting of the lipids occurs. Thus, in the apical to basolateral transcytotic pathway both C6-NBD-GlcCer and C6-NBD-SM accumulate in SAC at 18 degreesC. At this temperature, transcytosing IgA also accumulates, and colocalizes with the lipids. Upon rewarming the cells to 37 degreesC, the lipids are transported from the SAC to their preferred membrane domain. Kinetic evidence is presented that shows in a direct manner that after leaving SAC, sphingomyelin disappears from the apical region of the cell, whereas GlcCer is transferred to the apical, bile canalicular membrane. The sorting event is very specific, as the GlcCer epimer C6-NBD-galactosylceramide, like C6-NBD-SM, is sorted in the SAC and directed to the basolateral surface. It is demonstrated that transport of the lipids to and from SAC is accomplished by a vesicular mechanism, and is in part microtubule dependent. Furthermore, the SAC in HepG2 bear analogy to the apical recycling compartments, previously described in MDCK cells. However, in contrast to the latter, the structural integrity of SAC does not depend on an intact microtubule system. Taken together, we have identified a non-Golgi-related compartment, acting as a "traffic center" in apical to basolateral trafficking and vice versa, and directing the polarized distribution of sphingolipids in hepatic cells.  相似文献   

2.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin-Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   

3.
MDCK cells expressing the polymeric immunoglobulin (poly-Ig) receptor, cocultured with IgA-producing hybridoma cells, transported dimeric IgA (dIgA) from the basolateral into the lumenal compartment, where it was recovered as secretory component-dIgA complexes. The tail of the receptor was phosphorylated on serines 664 and 726. Each serine was mutated to alanine. Appearance of A726 receptor at the basolateral surface was reduced approximately 5-fold. This was accompanied by a approximately 5-fold reduction in dIgA transcytosis. Basolateral delivery of receptor was not affected by mutation A664, and in the absence of dIgA, the receptor accumulated in recycling basolateral endosomes. In coculture, however, dIgA transcytosis by A664 receptor was normal. Thus, entry of receptor into the transcytotic pathway requires Ser-664 phosphorylation only in the absence of dIgA.  相似文献   

4.
Apolipoproteins (apo) are secreted preferentially from the basolateral surface of hepatocytes and enterocytes. The polarized secretion of proteins is either mediated by a protein-dependent sorting signal or by a cell-dependent default pathway. In order to determine the mechanism for the polarized secretion of apolipoproteins, we examined the secretion of apoA-I and apoA-II in transfected Madin-Darby canine kidney (MDCK) cells. Transfected MDCK cells and Caco-2 cells were grown as a polarized monolayer on tissue culture inserts, which separate an upper apical compartment from the lower basolateral compartment, and the secretion of apoA-I and apoA-II into the apical and basolateral compartments was quantitated by immunoprecipitation. Caco-2 cells almost exclusively secreted apoA-I and apoA-II basolaterally, with an apical to basolateral ratio of 18:82 for apoA-I, and 11:89 for apoA-II. In contrast, transfected MDCK cells secreted significant amounts of apoA-I and apoA-II into both compartments, but with a bias toward apical secretion and an apical to basolateral ratio of 66:34 and 68:32, respectively. The polarized secretion of MDCK cells was not due to transcytosis, diffusion, or differential recovery. As assessed by density gradient ultracentrifugation, apoA-I and apoA-II secreted from either the apical or basolateral surface were relatively lipid-poor. Overall, these results suggest that the polarized secretion of apoA-I and apoA-II does not occur by a protein-dependent sorting signal, but by a cell-dependent default pathway that leads to preferential basolateral secretion by Caco-2 cells and both apical and basolateral secretion in MDCK cells, but with a bias toward apical secretion.  相似文献   

5.
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.  相似文献   

6.
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.  相似文献   

7.
The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin-Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.  相似文献   

8.
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM's basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.  相似文献   

9.
All basolateral sorting signals described to date reside in the cytoplasmic domain of proteins, whereas apical targeting motifs have been found to be lumenal. In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the TGN upon expression in polarized epithelial MDCK cells. Truncated rhodopsin with a deletion of 32 COOH-terminal residues shows a nonpolar steady-state distribution. Addition of the COOH-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin's cytoplasmic tail to a cytosolic protein glutathione S-transferase (GST) also targets this fusion protein (GST-Rho39Tr) to the apical membrane. The targeting of GST-Rho39Tr requires both the terminal 39 amino acids and the palmitoylation membrane anchor signal provided by the rhodopsin sequence. The apical transport of GST-Rho39Tr can be reversibly blocked at the Golgi complex by low temperature and can be altered by brefeldin A treatment. This indicates that the membrane-associated GST-Rho39Tr protein may be sorted along a yet unidentified pathway that is similar to the secretory pathway in polarized MDCK cells. We conclude that the COOH-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This finding further indicates that cytoplasmic sorting machinery may exist in MDCK cells for some apically targeted proteins, analogous to that described for basolaterally targeted proteins.  相似文献   

10.
Delivery of newly synthesized membrane-spanning proteins to the apical plasma membrane domain of polarized MDCK epithelial cells is dependent on yet unidentified sorting signals present in the luminal domains of these proteins. In this report we show that structural information for apical sorting of transmembrane neurotrophin receptors (p75(NTR)) is localized to a juxtamembrane region of the extracellular domain that is rich in O-glycosylated serine/threonine residues. An internal deletion of 50 amino acids that removes this stalk domain from p75(NTR) causes the protein to be sorted exclusively of the basolateral plasma membrane. Basolateral sorting stalk-minus p75(NTR) does not occur by default, but requires sequences present in the cytoplasmic domain. The stalk domain is also required for apical secretion of a soluble form of p75(NTR), providing the first demonstration that the same domain can mediate apical sorting of both a membrane-anchored as well as secreted protein. However, the single N-glycan present on p75(NTR) is not required for apical sorting of either transmembrane or secreted forms.  相似文献   

11.
The separation of functional early and late endosomes from other cellular compartments by free-flow electrophoresis (FFE) has been previously demonstrated in nonpolarized cells. Here, using 125I-labeled anti-secretory component antibodies ([125I]SC Ab) and FITC-labeled asialoorosomucoid (FITC-ASOR) as markers of the transcytotic and lysosomal pathway, respectively, we demonstrate the separation of three distinct endosome subpopulations from polarized rat hepatocytes. Internalization of both markers at 16 degrees C resulted in their accumulation in a common endosome compartment, indicating that both the transcytotic and the lysosomal pathways are arrested in the sorting early endosome at temperatures below 20 degrees C. After chase of the markers from early endosomes into the transcytotic or the degradative route at 37 degrees C, transcytotic endosomes carrying [125I]SC Ab migrated with an electrophoretic motility between early and late endosomes while late endosomes labeled with FITC-ASOR were deflected more towards the anode than early endosomes. These data indicate that in rat hepatocytes, the transcytotic and lysosomal pathways utilize a common (i.e. early endosomes) and two distinct endosome subpopulations (i.e. transcytotic endosomes, late endosomes) prior to delivering proteins for biliary secretion or lysosomal degradation, respectively.  相似文献   

12.
The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl-) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl- secretion by stimulating CFTR Cl- channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl- secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl- secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.  相似文献   

13.
The extracellular matrix protein fibronectin was found to be secreted by three polarized epithelial cell lines Madin-Darby canine kidney (MDCK), Caco-2 and LLC-PK1. About 54 and 46% of fibronectin was secreted from the apical and basolateral cell surfaces, respectively, in MDCK cells. In Caco-2 and LLC-PK1 cells, the majority (about 92-93%) of fibronectin secretion occurs from the basolateral cell surface, with the remaining 7-8% from the apical surface. In all three cell types, NH4Cl was found to inhibit basolateral secretion (resulting in enhanced apical secretion), while total fibronectin secretion was not significantly affected (although a delay in secretion was observed). Nocodazole reduced total fibronectin secretion to about 70% of control levels in MDCK and Caco-2 cells, with significant inhibition on secretion from both surfaces. In contrast, total fibronectin secretion was enhanced by nocodazole in LLC-PK1 cells. Furthermore, the majority of fibronectin secretion was redirected to the apical cell surface in LLC-PK1 cells. These observations demonstrate that the nature as well as the extent of the effects of NH4-Cl and nocodazole on polarized fibronectin secretion varies amongst different epithelial cell types.  相似文献   

14.
G-protein-coupled receptors demonstrate differing trafficking itineraries in polarized Madin-Darby canine kidney (MDCK II) cells. The alpha2A adrenergic receptor (alpha2AAR) is directly delivered to the basolateral subdomain; the A1 adenosine receptor (A1AdoR) is apically enriched in its targeting; and the alpha2BAR subtype is randomly delivered to both domains but selectively retained basolaterally (Keefer, J. R., and Limbird, L. E. (1993) J. Biol. Chem. 268, 11340-11347; Saunders, C., Keefer, J. R., Kennedy, A. P., Wells, J. N., and Limbird, L. E. (1996) J. Biol. Chem. 271, 995-1002; Wozniak, M., and Limbird, L. E. (1996) J. Biol. Chem. 271, 5017-5024). The present studies explore the role of the polarized cytoskeleton in localization of G-protein-coupled receptors in MDCK II cells. Nocodazole or colchicine, which disrupt microtubules, did not perturb lateral localization of alpha2AR subtypes but led to a relocalization the A1AdoR to the basolateral surface, revealed by immunocytochemical and metabolic labeling strategies. Conversely, the apical component of the random delivery of alpha2BAR was not affected by these agents, suggesting microtubule-dependent and -independent apical targeting mechanisms for G-protein-coupled receptors in polarized cells. Apparent rerouting of the apically targeted A1AdoR was selective for microtubule-disrupting agents, since cytochalasin D, which disrupts actin polymerization, did not alter A1AdoR or alpha2BAR localization or targeting. These data suggest that multiple apical targeting mechanisms exist for G-protein-coupled receptors and that microtubule-disrupting agents serve as tools to probe their different trafficking mechanisms.  相似文献   

15.
In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked "hyperpolarization," i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.  相似文献   

16.
Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to the apical domain or to the basolateral plasma membrane domain. In this study, we investigated the role of the coronavirus spike protein, because of its prominent position in the virion the prime sorting candidate, in the directionality of virus release. Three independent approaches were taken. (i) The inhibition of N glycosylation by tunicamycin resulted in the synthesis of spikeless virions. The absence of spikes, however, did not influence the polarity in the release of virions. Thus, murine hepatitis virus strain A59 (MHV-A59) was still secreted from the basolateral membranes of mTAL and LMR cells and from the apical sides of MDCK(MHVR) cells, whereas transmissible gastroenteritis virus (TGEV) was still released from the apical surfaces of LMR cells. (ii) Spikeless virions were also studied by using the MHV-A59 temperature-sensitive mutant Albany 18. When these virions were produced in infected LMR and MDCK(MHVR) cells at the nonpermissive temperature, they were again preferentially released from basolateral and apical membranes, respectively. (iii) We recently demonstrated that coronavirus-like particles resembling normal virions were assembled and released when the envelope proteins M and E were coexpressed in cells (H. Vennema, G.-J. Godeke, J. W. A. Rossen, W. F. Voorhout, M. C. Horzinek, D.-J. E. Opstelten, and P. J. M. Rottier, EMBO J. 15:2020-2028, 1996). The spikeless particles produced in mTAL cells by using recombinant Semliki Forest viruses to express these two genes of MHV-A59 were specifically released from basolateral membranes, i.e., with the same polarity as that of wild-type MHV-A59. Our results thus consistently demonstrate that the spike protein is not involved in the directional sorting of coronaviruses in epithelial cells. In addition, our observations with tunicamycin show that contrary to the results with some secretory proteins, the N-linked oligosaccharides present on the viral M proteins of coronaviruses such as TGEV also play no role in viral sorting. The implications of these conclusions are discussed.  相似文献   

17.
Epithelial cells contain two distinct membrane surfaces, the apical and basolateral plasma membranes, which have different lipid and protein compositions. In order to assess the effect of the compositional differences of the apical and basolateral membranes on their ability to undergo cholesterol efflux, MDCK cells were radiolabeled with [3H]cholesterol and grown as a polarized monolayer on filter inserts, that separate the upper apical compartment from the lower basolateral compartment. The rate of cholesterol efflux from the basolateral membrane into media containing HDL in the basolateral compartment was 6.3%/h +/-0.7, whereas HDL-mediated efflux from the apical membrane was approximately 3-fold slower (1.9%/h +/-0.3). In contrast, Fu5AH cells, which do not form distinct polarized membrane domains, had a similar rate of HDL-mediated cholesterol efflux into the apical and basolateral compartments. Similar to HDL, other cholesterol acceptors, namely LDL, bovine serum albumin, and a lipid emulsion, also showed a decreased rate of cholesterol efflux from the apical membrane surface versus the basolateral membrane. Compared to the basolateral membrane, the apical membrane was also found to be more resistant to cholesterol oxidase treatment, to bind less HDL, and to take up less cholesterol from the medium. In conclusion, cholesterol efflux occurred less readily from the apical membrane than from the basolateral membrane for all types of acceptors tested. These results suggest that differences in the composition of the apical and basolateral membrane lead to a relative decrease in cholesterol desorption from the apical membrane and hence a reduced rate of cholesterol efflux.  相似文献   

18.
We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti-caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport.  相似文献   

19.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin-Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0 degreesC, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5-10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

20.
T-84 and Caco-2 human colon carcinoma cells and Madin-Darby canine kidney (MDCK) cells were used to study binding and transcytosis of iodinated Clostridium botulinum neurotoxin serotypes A, B, and C, as well as tetanus toxin. Specific binding and transcytosis were demonstrated for serotypes A and B in intestinal cells. Using serotype A as an example, the rate of transcytosis by T-84 cells was determined in both apical to basolateral (11.34 fmol/h/cm2) as well as basolateral to apical (8.98 fmol/h/cm2) directions, and by Caco-2 cells in the apical to basolateral (8.42 fmol/h/cm2) direction. Serotype A retained intact di-chain structure during transit through T-84 or Caco-2 cells, and when released on the basolateral side was toxic in vivo to mice and in vitro on mouse phrenic nerve-hemidiaphragm preparations. Serotype C and tetanus toxin did not bind effectively to T-84 cells, nor were they efficiently transcytosed (8-10% of serotype A). MDCK cells did not bind or efficiently transcytose (0.32 fmol/h/cm2) botulinum toxin. Further characterization demonstrated that the rate of transcytosis for serotype A in T-84 cells was increased 66% when vesicle sorting was disrupted by 5 microM brefeldin A, decreased 42% when microtubules were disrupted by 10 microM nocodazole, and decreased 74% at 18 degreesC. Drugs that antagonize toxin action at the nerve terminal, such as bafilomycin A1 (which prevents acidification of endosomes) and methylamine HCl (which neutralizes acidification of endosomes), produced only a modest inhibitory effect on the rate of transcytosis (17-22%). These results may provide an explanation for the mechanism by which botulinum toxin escapes the human gastrointestinal tract, and they may also explain why specific serotypes cause human disease and others do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号