首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For successful parasitization, the female Campoletis sonorensis endoparasitic wasp injects a polydnavirus into its host, Heliothis virescens, during oviposition. Viral gene expression induces immunosuppression and alters development of the host. We report here that three abundantly expressed genes, VHv1.1, WHv1.0, and WHv1.6, describes a polydnavirus "cysteine-rich" gene family which may be important in inducing these host manifestations. These genes have a similar primary gene structure and their proteins contain cysteine motifs characteristic of snail ion-channel ligands, the omega-conotoxins. Like the omega-conotoxins, the intercysteine amino acid residues are hypervariable with only three identical amino acids in all motifs. The conservation of this domain in the three viral genes may reflect an important functional role for these viral proteins in the parasitization of H. virescens. The three genes also contain introns similar in sequence at comparable positions in their 5' untranslated leaders and coding sequences. VHv1.1 contains two cysteine motifs, and each motif is interrupted by an intron at the same position as in the cysteine motifs of WHv1.0 and WHv1.6. Intron 2 sequences of WHv1.0 and WHv1.6 are 92% identical, while the immediately flanking exon sequences encoding the cysteine motifs are only 76% identical. This provides an example of nuclear pre-mRNA introns which are more conserved than flanking exons among members of a gene family.  相似文献   

2.
During parasitization of Heliothis virescens, Campoletis sonorensis deposits an egg along with venom, polydnavirus particles (CsPDV), and ovarian proteins (OPs). Oviposited eggs are not encapsulated, while washed eggs are encapsulated rapidly by H. virescens. Early protection from encapsulation is afforded by a group of 29-36 kD OP glycoforms. These glycoforms are endocytosed by host hemocytes within 30 min post-parasitization (pp) and disrupt hemocyte spreading behavior and egg encapsulation through at least 24 h p.i. Purified CsPDV does not protect eggs from encapsulation early, but disrupts hemocyte spreading and egg encapsulation from 24 h through at least 5 days p.i. Functional activity of CsPDV appears to be correlated with time-dependent accumulation of virus-specific proteins in parasitized insects. We propose that the fast-acting 29-36 kD OP protects Campoletis eggs from encapsulation until accumulation of CsPDV proteins which sustain immunosuppression.  相似文献   

3.
The myxoma virus tumor necrosis factor (TNF) receptor homolog, M-T2, is expressed both as a secreted glycoprotein that inhibits the cytolytic activity of rabbit TNF-alpha and as an endoglycosidase H-sensitive intracellular species that prevents myxoma virus-infected CD4+ T lymphocytes from undergoing apoptosis. To compare the domains of M-T2 mediating extracellular TNF inhibition and intracellular apoptosis inhibition, recombinant myxoma viruses expressing nested C-terminal truncations of M-T2 protein were constructed. One mutant, deltaL113, containing intact copies of only two cysteine-rich domains, was not secreted and was incapable of binding rabbit TNF-alpha yet retained full ability to inhibit virus-induced apoptosis of RL-5 cells. Thus, the minimal domain of intracellular M-T2 protein required to inhibit apoptosis is distinct from that required by the extracellular M-T2 for functional TNF-alpha binding and inhibition. This is the first report of a virus-encoded immunomodular protein with two distinct antiimmune properties.  相似文献   

4.
The relationship between Bacillus thuringiensis Cry1Aa, Cry1Ab and Cry1Ac delta-endotoxin binding and pore formation was investigated using a purified 170 kDa aminopeptidase N (APN) from Heliothis virescens brush border membranes. Aminopeptidases with molecular sizes of 110, 140 and 170 kDa were eluted from a Cry1Ac toxin affinity column using N-acetylgalactosamine. The 140 kDa aminopeptidase has a cross-reacting determinant typical of a cleaved glycosyl-phosphatidylinositol anchor. After mild base treatment to de-acylate the glycosyl-phosphatidylinositol linkage and incubation in phosphatidyl inositol phospholipase C, anti-cross-reacting determinant antibody recognized the 170 kDa protein. Kinetic binding characteristics of Cry1A toxins to purified 170 kDa APN were determined using surface plasmon resonance. Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1C and Cry1E toxins recognized 170 kDa APN. Each Cry1A toxin recognized two binding sites: a high affinity site with KD ranging from 41 to 95 nM and a lower affinity site with KD in the 325 to 623 nM range. N-acetylgalactosamine inhibited Cry1Ac but not Cry1Aa and Cry1Ab binding to 170 kDa APN. When reconstituted into phospholipid vesicles, the 170 kDa APN promoted toxin-induced 86Rb+ release for Cry1A toxins, but not Cry1C toxin. Furthermore Cry1Ac, the Cry protein most toxic to H. virescens larvae, caused 86Rb+ release at lower concentrations, and to a greater extent than Cry1Aa and Cry1Ab toxins. The correlation between toxin-binding specificity and 86Rb+ release strongly suggests that the purified 170 kDa APN is the functional receptor A in the H. virescens midgut epithelial cell brush border membranes.  相似文献   

5.
Generation of insect-resistant, transgenic crop plants by expression of the insecticidal crystal protein (ICP) gene of Bacillus thuringiensis (Bt) is a standard crop improvement approach. In such cases, adequate expression of the most appropriate ICP against the target insect pest of the crop species is desirable. It is also considered advantageous to generate Bt-transgenics with multiple toxin systems to control rapid development of pest resistance to the ICP. Larvae of yellow stem borer (YSB), Scirpophaga incertulas, a major lepidopteran insect pest of rice, cause massive losses of rice yield. Studies on insect feeding and on the binding properties of ICP to brush border membrane receptors in the midgut of YSB larvae revealed that cryIAb and cryIAc are two individually suitable candidate genes for developing YSB-resistant rice. Programs were undertaken to develop Bt-transgenic rice with these ICP genes independently in a single cultivar. A cryIAc gene was reconstructed and placed under control of the maize ubiquitin 1 promoter, along with the first intron of the maize ubiquitin 1 gene, and the nos terminator. The gene construct was delivered to embryogenic calli of IR64, an elite indica rice cultivar, using the particle bombardment method. Six highly expressive independent transgenic ICP lines were identified. Molecular analyses and insect-feeding assays of two such lines revealed that the transferred synthetic cryIAc gene was expressed stably in the T2 generation of these lines and that the transgenic rice plants were highly toxic to YSB larvae and lessened the damage caused by their feeding.  相似文献   

6.
An expression cloning screen was used to isolate a novel gene homologous to the extracellular cysteine-rich domain of frizzled receptors. The gene (which we called sizzled for secreted frizzled) was shown to encode a soluble secreted protein, containing a functional signal sequence but no transmembrane domains. Sizzled (szl) is capable of inhibiting Xwnt8 as assayed by (1) dose-dependent inhibition of siamois induction by Xwnt8 in animal caps, (2) rescue of embryos ventralized by Xwnt8 DNA and (3) inhibition of XmyoD expression in the marginal zone. Szl can dorsalize Xenopus embryos if expressed after the midblastula transition, strengthening the idea that zygotic expression of wnts and in particular of Xwnt8 plays a role in antagonizing dorsal signals. It also suggests that inhibiting ventralizing wnts parallels the opposition of BMPs by noggin and chordin. szl expression is restricted to a narrow domain in the ventral marginal zone of gastrulating embryos. szl thus encodes a secreted antagonist of wnt signaling likely involved in inhibiting Xwnt8 and XmyoD ventrally and whose restricted expression represents a new element in the molecular pattern of the ventral marginal zone.  相似文献   

7.
Human peripheral blood granulocytes previously were found to contain opioid delta 2-receptors mediating stimulation by opioid peptides of chemotaxis. Studies presented in this work indicate that granulocytes also contain opiate alkaloid-selective, opioid peptide-insensitive receptors mediating inhibition by morphine and other opiates of cytokine-induced activation and chemotaxis. Binding studies with [3H]morphine and [3H]diprenorphine ([3H]DPN) indicated the presence of receptor sites, at considerable density with affinities and selectivity for opiates comparable with those of the mu 3-receptor of human peripheral blood monocytes (macrophages). The influence of the guanosine 5'-triphosphate (GTP) analogue GppNHp on binding indicated that the granulocyte receptor was linked to a G protein. Morphine but not opioid peptides interfered with activation and/or chemotaxis of the granulocytes induced by TNF-alpha, IL-1 alpha, IL-8, and FMLP (chemotactic peptide). These effects of morphine were blocked by the antagonist naloxone. Levorphanol inhibited TNF-alpha-induced activation, and also potentiated the inhibition by morphine. Furthermore, in binding assays, levorphanol enhanced the affinity of the receptor for morphine. Dextrorphan had no effect on activation or chemotaxis, and it also had no effect on binding, indicative of stereoselectivity for the effect of levorphanol. It is concluded that human granulocytes contain opiate alkaloid-selective mu 3-receptors that mediate inhibitory effects of morphine on cellular activation by cytokines.  相似文献   

8.
Poxviruses encode a variety of immunomodulatory proteins that subvert the cytokine networks of infected hosts. Myxoma virus, a poxvirus pathogen of rabbits, expresses two distinct 35- to 40-kDa secreted glycoproteins that bind a broad spectrum of chemokines. The first of these, designated M-T7, is encoded by the T7 gene and is the first example of what is here referred to as type-I chemokine binding protein (CBP-I). M-T7 was initially discovered as a secreted viral homologue of cellular interferon-gamma receptor but binding studies indicate that purified M-T7 protein also interacts with members of the CXC, CC, and C chemokine families through the conserved heparin-binding domains. The second myxoma protein, M-T1, also called CBP-II, is a member of a larger superfamily of poxvirus proteins that includes related secreted 35-kDa proteins encoded by a wide variety of orthopoxviruses. Deletion analysis of either CBP-I or -II genes within recombinant poxvirus constructs revealed profound alterations in the trafficking of infiltrating leukocytes into virus-infected lesions. It is proposed that the interaction of CBP-I with the conserved heparin-binding domains found on most chemokines represents a novel mechanism for altering multiple chemokine functions in vivo. In summary, CBP-I and CBP-II are the first examples of secreted virus proteins that bind to multiple chemokine family members as part of a strategy to prevent the early phase of inflammatory cell migration into virus-infected tissues.  相似文献   

9.
This paper describes the identification of a new family of mammalian genes that encode secreted proteins containing homology to the cysteine-rich ligand-binding domain found in the frizzled family of transmembrane receptors. The secreted frizzled-related proteins (sFRPs) are approximately 30 kDa in size, and each contains a putative signal sequence, a frizzled-like cysteine-rich domain, and a conserved hydrophilic carboxy-terminal domain. The sFRPs are not the products of differential splicing of the known frizzled genes. Glycosylphosphatidylinositol-anchored derivatives of sFRP-2 and sFRP-3 produced in transfected human embryonic kidney cells confer cell-surface binding by the Drosophila Wingless protein. These observations suggest that sFRPs may function in vivo to modulate Wnt signaling, or, alternatively, as novel ligands for as yet unidentified receptors.  相似文献   

10.
The A4VAR is a variant antigen expressed by a clonal line that binds CD36 and intercellular adhesion molecule-1, ICAM-1. We have cloned and sequenced the extracellular domain coded by the A4var gene. To probe the relationship between A4var expression and parasite adhesion to ICAM-1, var mRNA and protein expression were analyzed in an enriched population of A4 parasites that displayed higher ICAM-1 binding. By Northern analyses, A4var was the predominant var message and antisera raised against a recombinant A4VAR protein reacted with the majority of infected erythrocytes, reinforcing previous conclusions that A4VAR binds ICAM-1. A4VAR contains five Duffy-binding like (DBL) domains, and two cysteine-rich interdomain regions (CIDR) domains. DBL and CIDR domains from A4VAR were expressed in mammalian cells to determine which regions mediate binding to CD36 and ICAM-1. Using several different binding assays, the A4VAR CIDR1 was the only domain found to bind CD36. In contrast, the same assays were unable to identify the ICAM-1 binding domain in A4VAR. This is the first time that each of the DBL and CIDR domains from a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) have been systematically expressed and tested for binding. These results confirm that CIDR1 is sufficient to bind CD36 without any apparent contribution from other domains.  相似文献   

11.
12.
A plasmid vector was constructed for the expression of a single chain Fv domain of mouse mAb to Z-DNA (antibody Z22), which is encoded by VH10 and V kappa 10 gene family members along with Dsp2, JH4, and J kappa 4 segments. The vector coded for a PhoA secretion signal, VH segment, flexible peptide linker, VL segment, (His)5, and a protein A domain. Unique restriction sites allowed exchange of the segments as cassettes. Bacteria transformed with the vector secreted soluble recombinant Fv with specific Z-DNA-binding activity. When the L chain of Z22 was replaced with a library of splenic VL cDNA from a mouse immunized with Z-DNA, only a light chain closely resembling that of the original Z22 (differing at six amino acid positions) yielded Fv with Z-DNA-binding activity. The Fv with this L chain replacement had a lowered affinity, but remained selective for Z-DNA. Replacement of the Z22 H chain with a mixture of 11 VH10-encoded H chains yielded two Z-DNA binding clones, but they bound B-DNA and denatured DNA as well as Z-DNA. The replacement clones indicate the importance of the H chain CDR3 and particular VH-VL combinations in formation of specific antibodies to Z-DNA.  相似文献   

13.
Using synthetic substrates we have characterised carboxypeptidase activity in gut extracts from Helicoverpa armigera larvae. Carboxypeptidase A activity predominates, with only low levels of carboxypeptidase B activity present. Maximum carboxypeptidase A activity occurs over a broad pH range and is inhibited by phenanthroline and potato carboxypeptidase inhibitor. A cDNA clone encoding carboxypeptidase (the first such sequence from a lepidopteran insect) was isolated from a larval gut library. The sequence predicts a secreted polypeptide of Mr 46.6 k with homology to metallocarboxypeptidases from mammalian and invertebrate species. The presence of a serine residue at the active site suggests carboxypeptidase A activity. To further characterise the gene product, the complete cDNA sequence was expressed in insect cells using the baculovirus system. Culture supernatant from these cells contained carboxypeptidase A activity, with no activity against a carboxypeptidase B substrate; the carboxypeptidase B activity in gut extracts must thus be due to a separate enzyme. In agreement with this conclusion, the expressed carboxypeptidase cDNA is a member of a small multigene family. Chronic ingestion of soybean Kunitz trypsin inhibitor by H. armigera larvae results in increased accumulation of carboxypeptidase mRNA in the midgut cells, and an increase in carboxypeptidase A activity detected in gut extract.  相似文献   

14.
Various trematode larvae can interfere with the host snail's resistance to the same or unrelated trematode species, chiefly, it appears by interference with the function of the host's granulocytes. In Biomphalaria glabrata infected with the trematodes, Echinostoma paraensei, granulocytes lose their ability to encapsulate the larvae of trematodes to which the hosts were previously resistant. However, the granulocytes in these snails retain their ability to encapsulate injected latex spheres, or larvae of the metastrongyle nematode, Angiostrongylus malaysiensis, and to phagocytose epidermal plates cast off by miracidia of the trematode, Schistosoma mansoni. Cellular infiltration in injured preputial tissue of the snail also was not suppressed by the presence of E. paraensei larvae. Interference with the granulocyte function in B. glabrata induced by E. paraensei infection therefore appears to be a selective phenomenon.  相似文献   

15.
16.
Vesicular stomatitis is a viral disease of cattle, pigs, and horses. The disease is characterized by vesicular lesions on the epithelium of the mouth, feet, and teats. The pathological lesions are virtually indistinguishable from that of foot-and-mouth disease. We have developed a recombinant baculovirus that expresses the nucleocapsid (N) protein of the New Jersey serotype of vesicular stomatitis virus (VSVNJ) in insect cells (Sf9) and larvae (Spodoptera exigua). The gene was expressed under control of the polyhedrin promoter as a fusion or nonfusion protein. The recombinant N protein expressed in insect cells could not be distinguished from N protein produced in VSVNJ-infected CHO cells by immunological and biochemical analyses. The level of expression of N as a percentage of the total protein in Sf9 cells was 41% for the fusion and 60% for the nonfusion protein. Higher level (68%) of expression of the nonfusion N protein was obtained in larvae. Recombinant N protein was used in an ELISA to distinguish animals vaccinated with a recombinant VSV glycoprotein from those exposed to the whole virus by infection or classical vaccine. Lysate of a single infected larva (0.2-0.3 g) was adequate for coating ELISA plates to perform 10,000 serum assays in duplicate.  相似文献   

17.
This study attempted to identify a possible antibody response to Helicobacter pylori, which is associated with patients with adeno-carcinoma of the stomach. By using proteins of H. pylori as the antigen, pooled sera from gastric cancer and non-cancer patients were used as the first antibody for Western blot analysis. Antibody responses to a 26 kD secreted protein were observed in pooled cancer sera, but not in pooled sera from non-cancer patients. The protein was purified, while amino acid sequences revealed that it was a H. pylori species specific protein. The gene of this protein was cloned and a recombinant protein was expressed in E. coli. In addition, an antibody to the recombinant protein was tested in each individual patient using Western blot analysis. None of the forty non-gastric cancer patients were positive for the antibody to the recombinantly expressed 26 kD species specific protein. Meanwhile, six of the twenty four cancer patients tested positive (0/40 vs 6/24, p < 0.01). Results presented herein demonstrate that the species specific protein of H. pylori can be useful in detecting H. pylori associated with adenocarcinoma of the stomach.  相似文献   

18.
The objective of this study was to analyze allogeneic lymphocyte proliferative responses to cultured human pancreatic islets after gene transfer of viral interleukin (IL)-10 to the islets using replication-defective adenoviral vector. Human islets, either whole or dispersed into single cells, were cocultured with adenovector containing an expression cassette encoding the viral IL-10 gene under control of an SV40 promoter, this sequence replacing viral E1A and part of E1B early viral protein sequences. Subsequent production of recombinant protein by islets was determined by ELISA, and was found dependent on the multiplicity of infection (or ratio of vector to target cells). Protein was secreted by transfected islets at high levels 3-7 days after gene transfer. At high multiplicity of infection (100:1), islet viability was normal, but insulin secretion in response to glucose stimulation was blunted by 50%. Low-level recombinant viral IL-10 secretion by the islets was associated with increased allogeneic lymphocyte proliferation in mixed islet lymphocyte reactions. At protein levels in islet supernatant above 5 ng/ml, lymphocyte proliferation was significantly reduced. This pattern of viral IL-10 effect on lymphocyte proliferation correlated well with mixed lymphocyte reaction assays using purified protein. We conclude that transferred cytokine sequences are secreted by transfected islets as a function of the initial vector inoculum. The functional effect of the secreted cytokine viral IL-10 on allogeneic lymphocyte proliferation is dose dependent. Low-level recombinant protein secretion tended to augment lymphocyte proliferation, whereas high-level secretion significantly down-regulates this response.  相似文献   

19.
We describe a novel fungal expression system which utilizes the Quorn myco-protein fungus Fusarium graminearum A 3/5. A transformation system was developed for F. graminearum and was used to introduce the coding and regulatory regions of a trypsin gene from Fusarium oxysporum. The protein was efficiently expressed, processed and secreted by the recombinant host strain. In addition, the promoter and terminator of the F. oxysporum trypsin gene have been successfully utilized to drive the expression of a cellulase gene from Scytalidium thermophilum and a lipase gene from Thermomyces lanuginosus in F. graminearum.  相似文献   

20.
A yeast (Saccharomyces cerevisiae) expression system has been adapted to produce reagent quantities of a major Onchocerca antigen, Ov33. Using a pool of monoclonal antibodies produced against third-stage larvae, a cDNA library constructed from adult O. volvulus worms was screened. Twenty-seven cDNAs were isolated, two of which had sequence homology to Ov33, a putative aspartyl protease inhibitor, which is the immunodominant antigen of O. volvulus. These cDNAs were expressed at high levels intracellularly or through the secretory pathway of S. cerevisiae. Localization studies using antisera produced against purified recombinant protein demonstrated that Ov33 is a very abundant parasite protein present in the hypodermis, muscle, and uterus of female worms, as well as in embryonic microfilariae. The soluble recombinant protein secreted by yeast (C71) demonstrated inhibitory activity against the aspartyl protease pepsin. Antibodies to the recombinant protein-mediated leukocyte adherence to and killing of skin microfilariae. The sensitivity of a diagnostic test using recombinant Ov33 was evaluated using sera from 441 patients. The mean sensitivities for the two recombinant constructs, C27 and C71, were 82.2% and 85.4%, respectively. The combined sensitivity using both recombinant proteins was 94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号