首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Several lines of evidence suggest that the cellular enzyme 15 lipoxygenase (15-LO) may be important in promoting the oxidation of lipoproteins in vivo. In previous studies we have shown that fibroblasts transfected with 15-LO "seed" LDL with lipoperoxides such that subsequent oxidation readily generates an LDL that is taken up by macrophages through scavenger receptors. We now demonstrate that LDL incubated with 15-LO cells is "minimally modified" and has bioactive properties. Characterization of LDL incubated with 15-LO cells reveals that lipid peroxidation is modest, with low levels of TBARS generated (12.6 +/- 4.7 nmole MDA per mg protein) and small amounts of 18:2 lost as a result of oxidation (7%, compared with extensive loss [82%] with copper oxidation). The 15-LO-conditioned LDL showed mildly increased electrophoretic mobility on agarose gels, and on polyacrylamide gels it showed only mild protein degradation compared with copper-oxidized LDL. Additionally 15-LO-conditioned LDL competed very well for the LDL receptor of fibroblasts but did not compete for macrophage uptake of 125I-acetylated LDL. Importantly, compared with LDL incubated on beta-galactosidase (lac Z)-transfected control cells, LDL incubated on 15-LO cells stimulated monocyte chemotaxis (15-LO-LDL, 6.9 +/- 1.2 monocytes per field versus lac Z-LDL, 0 +/- 0.9 monocytes per field) and when added to endothelial cells enhanced adhesion (15-LO-LDL, 31.1 +/- 5.0 monocytes per field versus lac Z-LDL, 0 +/- 2.0 monocytes per field). Preincubation of 15-LO cells with 15-LO inhibitors significantly inhibited the generation of bioactive LDL. Lipid extracts of LDL conditioned on 15-LO cells showed chemotactic activity not related to lysophosphatidylcholine levels. Preincubation of target endothelial cells with several different platelet-activating factor receptor antagonists prevented stimulation of monocyte adhesion by 15-LO-conditioned LDL. When probucol- or vitamin E-enriched LDL was incubated with 15-LO cells it was less oxidized and less bioactive, which suggests that these cells seed LDL with LOOH, which then requires further propagation of lipid peroxidation to yield bioactivity. These studies demonstrate that fibroblasts expressing 15-LO reliably produce a bioactive "minimally modified" LDL, which may explain in part how cellular 15-LO activity may generate atherogenic LDL in vivo.  相似文献   

2.
Increasing evidence suggests that cytokines such as interleukin-1beta (IL-1), IL-4, and IL-8 may play an important role in the chronic inflammation and cellular growth observed in cardiovascular diseases. The lipoxygenase (LO) pathway of arachidonate metabolism has also been related to the pathology of hypertension and atherosclerosis. LO products have chemotactic, hypertrophic, and mitogenic effects in vascular cells, and the LO enzyme has been implicated in the oxidation of LDL. Furthermore, earlier studies have shown that vascular smooth muscle cell (VSMC) growth factors such as angiotensin II and platelet-derived growth factor can increase LO activity and expression in VSMCs. In the present study, we have examined whether vasoactive and inflammatory cytokines such as IL-1, IL-4, and IL-8 can modulate 12-LO activity and expression in porcine VSMCs and also whether they have growth-promoting effects in these cells. Treatment of porcine VSMCs with these cytokines led to significant increases in the levels of a cell-associated 12-LO product, 12-hydroxyeicosatetraenoic acid, as well as intracellular 12-LO enzyme activity. Furthermore, each of these cytokines led to a dose-dependent increase in 12-LO mRNA expression (333-base pair PCR product) as well as 12-LO protein expression (72 kD). In addition, all three interleukins could induce significant increases in VSMC DNA synthesis as well as proliferation. These results suggest that these cytokines have mitogenic effects in VSMCs and are also potent positive regulators of the 12-LO pathway. Thus, enhanced 12-LO activity and expression may be a key mechanism for cytokine-induced VSMC migration and proliferation.  相似文献   

3.
The effect of calcitriol/1 alpha,25-dihydroxyvitamin D3, alone and in combination with cytokines, on the expression of various antigens (Ag) on human peripheral blood monocytes and U937 cells was studied by flow cytometry. Both constitutive and interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6 and tumour necrosis factor-alpha (TNF-alpha)-induced human leucocyte antigen (HLA)-DR, HLA-DP and HLA-DQ Ag expression on monocytes was significantly down-regulated by calcitriol, IL-10 and transforming growth factor-beta (TGF-beta). The effects of calcitriol were concentration dependent and reached maximal inhibitory levels after 3-5 days. Modulation of HLA-DR by calcitriol and IFN-gamma at the protein level correlated with the amount of mRNA specific for the HLA-DR alpha-chain, as judged by Northern blot analysis. The basal as well as IL-4, IL-6, IFN-gamma, TNF-alpha and TGF-beta-driven levels of HLA-ABC Ag were significantly diminished by calcitriol. On U937 cells calcitriol markedly induced CD11a and CD11b expression and weakly up-regulated CD11c whereas on monocytes, constitutive CD11a, CD11b and CD11c expression was significantly down-regulated by calcitriol. The expression of CD14 Ag was strongly induced on U937 cells but only modestly on monocytes. Both the basal level of CD71 and IL-4, IFN-gamma or TNF-alpha-driven expression was diminished on calcitriol-treated U937 cells. In addition, calcitriol suppressed the expression of CD71 Ag on monocytes. The ability of monocytes to phagocytize opsonized Escherichia coli was diminished by calcitriol. Our results demonstrate that calcitriol, alone or in combination with cytokines, modulates expression of MHC, CD11b, CD11c, CD14 and CD71 Ag on both monocytes and U937 cells, and impairs the phagocytic property of monocytes.  相似文献   

4.
At inflammatory sites, the number of activated bystander T cells exceeds that of Ag-activated T cells. We investigated whether IL-15, a monocyte-derived cytokine that shares several biologic activities with IL-2, may contribute to bystander T cell activation in the absence of IL-2 and triggering Ag. The addition of IL-15 to cocultures of monocytes and T cells stimulates CD4+ but not CD8+ T cells to produce IFN-gamma. IFN-gamma production requires endogenous IL-12, the production of which in turn is dependent upon CD40/CD154 interactions between CD4+ T cells and monocytes. Indeed, non-TCR-activated CD4+ but not CD8+ T cells express significant levels of CD154. IL-15 may enhance IFN-gamma in this system by up-regulating CD40 expression on monocytes and IL-12Rbeta1 expression on CD4+ T cells. Conversely, using neutralizing anti-IL-15 mAb, we show that the ability of IL-12 to augment IFN-gamma secretion is partly mediated by endogenous IL-15. Finally, in the absence of monocytes, a synergistic effect between exogenous IL-12 and IL-15 is necessary to induce IFN-gamma production by purified CD4+ T cells, while IL-15 alone induces T cell proliferation. It is proposed that this codependence between IL-12 and IL-15 for the activation of inflammatory T cells may be involved in chronic inflammatory disorders that are dominated by a Th1 response. In such a response, a self-perpetuating cycle of inflammation is set forth, because IL-15-stimulated CD4+ T cells may activate monocytes to release IL-12 that synergizes with IL-15 to induce IL-12 response and IFN-gamma production.  相似文献   

5.
Active inflammatory bowel disease (IBD) is characterized by increased monocyte secretion of proinflammatory cytokines. Immunoregulatory cytokines such as Interleukin (IL)-4, IL-10, and IL-13 are capable of inhibiting the proinflammatory cytokine response of activated monocytes. The aim of our study was to determine the effect of different antiinflammatory cytokines under various culture conditions and to evaluate combinations of antiinflammatory cytokines in down-regulating monocyte response in IBD. Peripheral monocytes from patients with active IBD were isolated and stimulated with pokeweed mitogen (PWM). IL-4, IL-10, IL-13 and a combination of IL-4/IL-10 and IL-10/IL-13 were added at different concentrations and different times. Secretion of IL-1beta and TNF-alpha was assessed using sandwich ELISA systems. There was a diminished down-regulation of TNF-alpha by IL-4 and IL-13 in IBD when the cytokines were added at the time of stimulation, while there was a significantly higher down-regulation when monocytes were primed with these Th-2 cytokines 24 hr before activation. IL-10 plus IL-4 and IL-10 plus IL-13, respectively, inhibited the proinflammatory cytokine response of monocytes as well as matured macrophages much more than IL-4, IL-10, or IL-13 alone. Even at suboptimal concentrations for each cytokine alone, a combination of cytokines showed synergistic inhibitory effects. In summary, a combination of antiinflammatory cytokines is more effective in down-regulating the response of activated monocytes than using the cytokines alone and thus may have a potential therapeutic benefit for patients with IBD.  相似文献   

6.
The co-stimulatory molecules B7-1/B7-2 expressed on the surface of antigen-presenting cells have been suggested to influence the development of T helper 1 (Th1)-versus Th2-immune responses. These studies were conducted to elucidate the effect of immunoregulatory cytokines which influence the development of Th1/Th2 immune responses on the expression of the B7 isoforms B7-1 and B7-2 on resting and activated human monocytes and B cells. Interleukin (IL)-4 and IL-10, which induce the development of Th2 immune responses, down-regulated B7-2 and moderately up-regulated B7-1 expression on resting CD14+ monocytes in peripheral blood mononuclear cells. Interferon-gamma (IFN-gamma), which induces the development of Th1 immune responses, enhanced the expression of both B7-1 and B7-2 isoforms. Tumor necrosis factor (TNF)-alpha, which elicits both Th1- and Th2 characteristics depending on experimental conditions, down-regulated B7-2 but did not alter B7-1 expression. The effect of TNF-alpha and B7-2 expression is not mediated through endogenously produced IL-10, as addition of anti-IL-10 antibodies did not restore B7-2 expression. None of the other cytokines tested, including IL-1 alpha, IL-1 beta, IL-2, IL-5, IL-6, IL-12, granulocyte/macrophage colony-stimulating factor (GM-CSF), and transforming growth factor (TGF)-alpha, modulated the expression of B7 isoforms on resting monocytes. Lipoolysaccharide stimulation of monocytes down-regulated B7-2 and up-regulated B7-1 expression in a manner similar to IL-10. The expression of B7-1 and B7-2 on purified B cells were not altered by any of the cytokines tested, including IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IFN-gamma, TNF-alpha, TGF-alpha and GM-CSF. Taken together, our results suggest that the cytokines which induce Th1/Th2 immune responses exert differential effects on B7 isoform expression on resting monocytes but have no effect on resting or activated B cells.  相似文献   

7.
8.
The discovery of new cytokines normally relies on a prior knowledge of at least one of their biological effects, which is used as a criterion either for the purification of the protein or for the isolation of the complementary DNA by expression cloning. However, the redundancy of cytokine activities complicates the discovery of novel cytokines in this way, and the pleiotropic nature of many cytokines means that the principal activities of a new cytokine may bear little relation to that used for its isolation. We have adopted an alternative approach which relies on differential screening of an organized subtracted cDNA library from activated peripheral blood mononuclear cells, using the inducibility of lymphokine messenger RNAs by anti-CD28 as a primary screening criterion. The ligation of the CD28 antigen on the T lymphocyte by a surface antigen, B7/BB-1, expressed on activated B lymphocytes and monocytes is a key step in the activation of T lymphocytes and the accumulation of lymphokine mRNAs. Here we report the discovery by molecular cloning of a new interleukin (interleukin-13 or IL-13) expressed in activated human T lymphocytes. Recombinant IL-13 protein inhibits inflammatory cytokine production induced by lipopolysaccharide in human peripheral blood monocytes. Moreover, it synergizes with IL-2 in regulating interferon-gamma synthesis in large granular lymphocytes. Recent mapping of the IL-13 gene shows that it is closely linked to the IL-4 gene on chromosome 5q 23-31 (ref. 4). Interleukin-13 may be critical in regulating inflammatory and immune responses.  相似文献   

9.
Interferon-alpha (IFN-alpha) is an important molecule in the antiviral response, but cells from HIV-1-infected individuals show a reduced ability to secrete IFN-alpha. We investigated an association between an imbalance of type 1/type2 cytokines and the production of IFN-alpha in HIV-1 infection. We used whole blood culture to study the cytokine production profile, interferon-gamma (IFN-gamma) and interleukin-4 (IL-4), in response to HIV-1 antigens and to study the Sendai Virus and HSV-1-induced-production of IFN-alpha in seven HIV-1-infected patients. An impaired synthesis of IFN-alpha was obtained in patients with a predominant IL-4 production (IL-4 > IFN-gamma), and we found a positive correlation between the ex vivo production of IFN-alpha and the IFN-gamma/IL-4 ratio but not with the HIV RNA copy number in plasma. We investigated the role of T-cell-derived cytokines in the in vitro production of IFN-alpha by PBMC from eight healthy donors, activated with Sendai Virus or HSV-1. Whereas type 2 cytokines (IL-4, IL-13) inhibited virus-induced IFN-alpha synthesis, on the contrary, type 1 cytokines (IL-2, IFN-gamma) enhanced it. A disarray in the T-cell-derived cytokine response may play a role in the defect of IFN-alpha production in HIV-1-infected individuals. Further investigations are needed to explore this hypothesis.  相似文献   

10.
11.
We have investigated possible mechanisms by which n-3 fatty acid-enriched macrophages enhance the oxidation of low density lipoprotein (LDL), and the ability of antioxidant vitamins to prevent this. Macrophages were enriched with n-3 fatty acids (eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid) following incubation with fish oil. These macrophages produced large amount of TBARS in medium containing metals, and showed enhanced capacity to oxidize LDL (3-4 fold increase compared to control cells) and to accumulate the modified LDL. 5,8,11,14-eicosatetraynoic acid (ETYA, 15-lipoxygenase inhibitor) and superoxide dismutase (SOD) did not inhibit the enhanced capacity of n-3 fatty acid-enriched cells to oxidize LDL. However antioxidants, (vitamin E-enriched macrophages or vitamin C in the medium), inhibited this enhanced capacity. Medium conditioned by n-3 fatty acid-enriched cells had pro-oxidant effects on metal-initiated LDL oxidation. We conclude that n-3 fatty acid-enriched macrophages display increased oxidant capacity which is not inhibited by ETYA or SOD, and that antioxidant vitamins inhibit the enhanced capacity to oxidize LDL.  相似文献   

12.
13.
Oxidation of LDL in the subendothelial space has been proposed to play a key role in atherosclerosis. Endothelial cells produce superoxide anions (O2.-) and oxidize LDL in vitro; however, the role of O2.- in endothelial cell-induced LDL oxidation is unclear. Incubation of human LDL (200 microg/mL) with bovine aortic endothelial cells (BAECs) for 18 hours resulted in a 4-fold increase in LDL oxidation compared with cell-free incubation (22.5+/-1.1 versus 6.3+/-0.2 [mean+/-SEM] nmol malondialdehyde/mg LDL protein, respectively; P<0.05). Under similar conditions, incubation of LDL with porcine aortic endothelial cells resulted in a 5-fold increase in LDL oxidation. Inclusion of exogenous copper/zinc superoxide dismutase (Cu/ZnSOD, 100 microg/mL) in the medium reduced BAEC-induced LDL oxidation by 79%. To determine whether the intracellular SOD content can have a similar protective effect, BAECs were infected with adenoviral vectors containing cDNA for human Cu/ZnSOD (AdCu/ZnSOD) or manganese SOD (AdMnSOD). Adenoviral infection increased the content and activity of either Cu/ZnSOD or MnSOD in the cells and reduced cellular O2.- release by two thirds. When cells infected with AdCu/ZnSOD or AdMnSOD were incubated with LDL, formation of malondialdehyde was decreased by 77% and 32%, respectively. Two other indices of LDL oxidation, formation of conjugated dienes and increased LDL electrophoretic mobility, were similarly reduced by SOD transduction. These data suggest that production of O2.- contributes to endothelial cell-induced oxidation of LDL in vitro. Furthermore, adenovirus-mediated transfer of cDNA for human SOD, particularly Cu/ZnSOD, effectively reduces oxidation of LDL by endothelial cells.  相似文献   

14.
Interleukin-4 (IL-4) is a potent immunomodulatory cytokine synthesized and released by Th2 lymphocytes, mast cells and basophils. It has important effects on monocyte/macrophage cell lines, regulating the secretion of several cytokines, and the production of eicosanoids. In human monocytes and macrophages, IL-4 increases the expression of 15-lipoxygenase and 15-HETE production, but suppresses the inducible isoform of the prostaglandin H synthase (PGHS-2) enzyme and prostanoid synthesis. Prostanoids, in particular prostaglandin E2 (PGE2) have important functions in modulating inflammatory and fibrotic processes. We compared the effect of IL-4 on the expression of PGHS-2 in human alveolar macrophages (AM) and blood monocytes (BM) activated with physiologically distinct stimuli, lipopolysaccharide (LPS) or IL-1 in vitro. The induction of PGHS-2 mRNA and protein, and prostanoid synthesis by all stimuli was inhibited by exogenous IL-4 in both cell types. However, monocytes were more susceptible to this effect of IL-4 than alveolar macrophages.  相似文献   

15.
High levels of fibrinogen are recognized as an important vascular risk factor; however, it is not known if the increase of plasma fibrinogen is directly responsible for this risk, or is only a marker of vascular inflammation. To support this second hypothesis, Oncostatin M (OSM) is a potent stimulator of fibrinogen biosynthesis and induces smooth muscle cell proliferation. In the same way, we analysed whether interleukin-4 (IL-4), interleukin-10 (IL-10) or interleukin-13 (IL-13), which protect vessel walls from monocytes injuries leading to atherosclerosis, could influence fibrinogen biosynthesis. The two levels of regulation of fibrinogen biosynthesis were tested: firstly, the direct effect of these cytokines on fibrinogen production by the hepatoma cell line Hep G2, and secondly their effect on the secretion of hepatocyte stimulating factor (HSF) activity in the supernatant of lipopolysaccharide (LPS)-activated monocytes. IL-4 and IL-13 added to Hep G2 cells down-regulated both the increase of fibrinogen secretion induced by IL-6 and fibrinogen mRNA levels, this effect being more pronounced when Hep G2 were preincubated with the two cytokines before IL-6 addition. The effect of IL-10 was evidenced only on mRNA expression. IL-10 and IL-13 dose-dependently decrease HSF activity secreted by LPS-activated monocytes, whereas IL-4 had no effect. However, the three cytokines decreased HSF activity when monocytes were incubated with the cytokines before LPS activation. The effects of these cytokines on HSF activity are related to variations of IL-6 and OSM secretion. Our data strengthen the hypothesis that the fibrinogen level is a marker of vascular disease, since cytokines which have a protective vascular effect down-regulate fibrinogen production.  相似文献   

16.
17.
18.
In an earlier study, we generated a large number of Mycobacterium leprae-responsive and M. leprae-nonresponsive T cell clones (TCC) from the lesional skin of immunologic unstable borderline leprosy patients. In that study, we divided TCC into type 1- and type 2-like on the basis of their IFN-gamma and IL-4 expression. To explore whether other cytokines are coproduced along with IFN-gamma and IL-4, we investigated the secretion of a panel of other cytokines (TNF-alpha, IL-5, IL-6, IL-10, and IL-13) by a large number of these TCC. Upon analysis of 139 M. leprae-responsive TCC, we observed a positive correlation in the coproduction of IFN-gamma/TNF-alpha (r = 0.81), and in that of IL-4/IL-5 (r = 0.83), IL-4/IL-13 (r = 0.80), and IL-5/IL-13 (r = 0.82). Polarized type 1-like TCC produced dominantly IFN-gamma/TNF-alpha, and polarized type 2-like TCC predominantly IL-4/IL-5/IL-13. Most type 0-like TCC produced both sets of cytokines. In contrast, type 1- and type 2-like subsets of M. leprae-nonresponsive TCC (n = 58) did not show the same coexpression of these cytokines. Furthermore, when the differential expression of a broad panel of cytokines by individual M. leprae-responsive TCC is considered, it appeared that additional phenotypes could be recognized. These results suggested that distinct isotypes of type 1- and type 2-like T cells, based on the secretion of a panel of cytokines, may reflect M. leprae-specific characteristics.  相似文献   

19.
In viral meningitis the inflammatory response involves activated T cells and monocytes which are recruited into the subarachnoid space. To identify the chemotactic signals attracting the cells to the site of infection in the meninges, we measured the levels of two CXC chemokines, interferon-gamma (IFN-gamma) inducible protein (IP)-10 and monokine induced by IFN-gamma, four CC chemokines, monocyte chemotactic protein (MCP)-1, RANTES, macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta, as well as the cytokines interleukin (IL)-15 and IL-16 in the cerebrospinal fluid (CSF) of patients suffering from viral meningitis. The results point to an involvement of two chemokines, MCP-1 and IP-10, since (1) unlike the other cytokines, MCP-1 and IP-10 were present in 97% and 79% of the CSF, respectively, at concentrations sufficient to induce chemotaxis of mononuclear cells; (2) more than 90% of the CSF of viral meningitis induced chemotaxis of peripheral blood mononuclear cells (PBMC) and all of them induced chemotaxis of activated T cells, and (3) the CSF-mediated chemotaxis of PBMC was inhibited by anti-MCP-1 antibodies and chemotaxis of activated T cells was abolished by the combination of anti-MCP-1 and anti-IP-10 antibodies. Our data provide evidence that MCP-1 and IP-10 lead to accumulation of activated T cells and monocytes in the CSF compartment in viral meningitis.  相似文献   

20.
IL-12 production mediated by a T cell-independent and/or T cell-dependent pathway was investigated in human monocytes responding to Cryptococcus neoformans. The data of this study showed that: 1) appreciable levels of IL-12 were observed when freshly isolated monocytes were exposed to acapsular C. neoformans or Candida albicans and secretion occurred within 24-48 h of incubation; 2) monocytes alone were poor producers of IL-12 when stimulated with encapsulated C. neoformans; 3) the presence of specific anti-glucuronoxylomannan mAb favored IL-12 secretion and Fc cross-linking could play a role; 4) monocytes were able to secrete consistent levels of IL-12 when cultured with activated T cells responding to C. neoformans; 5) the maximum secretion of IL-12 was observed at 5-7 days of culture and was strongly regulated by the presence of endogenous IFN-gamma; and 6) the interaction between CD40 on monocytes and CD40 ligand on activated T lymphocytes responding to C. neoformans played a critical role in IL-12 secretion. These data highlight the mechanisms of IL-12 production by human monocytes exposed to C. neoformans, indicating a possible biphasic secretion of IL-12, dependent on the direct effect of fungal insult, and characterized by consistent secretion of IL-12 that is dependent on the interaction of CD40 with the CD40 ligand expressed on activated T cells responding to C. neoformans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号