首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic theory for the growth of pearlite in binary and ternary steels is implemented to ensure local equilibrium at the transformation front with austenite, while accounting for both boundary and volume diffusion of solutes. Good agreement is on the whole observed with published experimental data, although the reported growth rate at the lowest of temperatures is much smaller than predicted. To investigate this, experiments were conducted to replicate the published data. It is found that the cooperation between cementite and ferrite breaks down at these temperatures, and surface relief experiments are reported to verify that the resulting transformation product is not bainite.  相似文献   

2.
Abstract

Results are reported of an investigation of solid state transformations in a series of α2 based alloys having an aluminium content of 26 at.-% with carbon up to 3 at.-%; two α2 basedquaternary Ti–Al–Nb–C alloys with 5 and 12 at.-%Nb and 3 at.-%C were also studied. Ordering occurs in the ternary Ti–Al–C alloys and also in the 23Al–5Nb–3C alloy on quenchingfrom 1250°C. Additional carbide precipitation was not observed in the ternary Ti–Al–C alloys on reheating to 750°C. Additions of niobium resulted in the presence of the β phase at 1050°C in the 5%Nb alloy and at 1050 and 750°C in the 12%Nb alloy. In the quaternary Ti–Al–Nb–C alloys, (Ti, Nb)3AlC was found to be the primary phase and was present in the microstructure over the temperature range studied. In the 21Al–12Nb–3C alloy, the ordered β phase transformed to α″2 martensite on quenching from 1250;amp;#x00B0;C.

MST/1306  相似文献   

3.
Abstract

Equilibrium experiments have been performed at 1373, 1173, and 973 K, with alloys of compositions within the aluminium rich corner of the Al–Ti–C phase diagram. The samples have been metallographically investigated using light optical microscopy and a scanning electron microscope equipped with a system for energy dispersive spectrometry. Equilibrium phases, as well as effects of cooling, have been identified. Dynamic effects originating from cooling are discussed and a tentative phase diagram is proposed. It was predicted theoretically and confirmed experimentally that a class II reaction involving four phases occurs, i.e. Al(l) + TiC(s)?Al3Ti(s) + Al4C3(s), below 1100 K.

MST/1807  相似文献   

4.
Abstract

The morphology and crystallographic phase of V–C carbide particles formed in cast Fe–Cr–Ni–V–C alloys were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM). The combination of results obtained with these techniques revealed that cuboidal, cruciform and spherical carbide particles were formed, depending on the alloy composition, all having the cubic-VC1?x structure (Fm-3m). Detailed TEM observations suggested that small carbide particles were initially cubic in shape and became spherical with increasing particle size. All cuboidal and spherical carbides were single crystallites with no grain boundary at any particle sizes, even after growing to 6 μm in diameter.  相似文献   

5.
6.
Abstract

An investigation has been made of the solid state constitution of the titanium rich portion of the Ti–Al–C system; partial isothermal sections have been established at 1250, 1050, and 750°C by means of electron microscopy (including energy dispersive X-ray analysis) and X-ray diffraction. In addition, a schematic liquidus projection has been deduced based on the solid state and as cast structures. The carbide phases present in the range studied are TiC, Ti3AlC, and Ti2AlC.

MST/1305  相似文献   

7.
We report the growth of pyrolytic boron–carbon–nitrogen (B–C–N) nanotubes on iron (Fe) and nickel (Ni) catalysts. It was discovered that different catalysts had effect on the elemental compositions of B–C–N nanotubes, which may allow one to tune the transport properties of B–C–N nanotubes in a wide range. A new synthetic route was also developed to generate H3N:BH3 as the precursor and yield boron nitride (BN) nanotubes by pyrolysis. The typical growth scenario of multi-wall BN tubes will be discussed.  相似文献   

8.
We report the growth of pyrolytic boron–carbon–nitrogen (B–C–N) nanotubes on iron (Fe) and nickel (Ni) catalysts. It was discovered that different catalysts had effect on the elemental compositions of B–C–N nanotubes, which may allow one to tune the transport properties of B–C–N nanotubes in a wide range. A new synthetic route was also developed to generate H3N:BH3 as the precursor and yield boron nitride (BN) nanotubes by pyrolysis. The typical growth scenario of multi-wall BN tubes will be discussed.  相似文献   

9.
10.
Abstract

Tensile samples of a C–Mn–Nb–Al steel (BS 4360: 50D grade) have been cast in situ and either directly tested in the temperature range 850–1200°C, or were allowed to cool through the transformation, re–solution treated, and then tested in the same temperature range. The hot ductility of the directly tested cast material was found to be superior to that of the reheated material. Carbon extraction replicas taken close to the fracture surfaces showed large differences in the distribution of sulphide inclusions and NbCN precipitates along the γ boundaries. The directly cast material had sulphide inclusions and NbCN precipitates present in the form of coarse particles situated close to the interdendritic boundaries. A significant proportion of these coarse sulphide inclusions and NbCN eutectics, produced during solidification, redissolved on reheating at 1330°C, and subsequently precipitated in a much finer form at the γ grain boundaries, reducing hot ductility. It appears likely that the very marked segregation which occurred during solidification enhanced the interdendritic regions with sulphur to such an extent that the sulphideformed was (Mn, Fe)S, which in gradually changing to the equilibrium precipitate, depleted the surrounding matrix of manganese. The low manganese level accompanying these inclusions allowed a greater degree of solution of the sulphides to occur on reheating and accounted for the subsequent fine precipitation at the boundaries.

MST/361  相似文献   

11.
Superhard polycrystalline diamond material consisting of crystallites less than 20 m in size and containing less than 5 wt % B4C is synthesized in the graphite–B4C system at 2600–2800 K and 8–9 GPa. In the Raman spectrum of this material, the main band (1332 cm–1) is shifted to lower frequencies by 40 cm–1, typical of heavily boron-doped diamond films. Based on experimental data, a mechanism is proposed for the transformation of graphite into polycrystalline diamond at temperatures between the melting points of the B4C–diamond and B4C–graphite eutectics.  相似文献   

12.
Two Co–C and Pd–C eutectic fixed point cells for both radiation thermometry and thermocouple thermometry were constructed at NMC. This paper describes details of the cell design, materials used, and fabrication of the cells. The melting curves of the Co–C and Pd–C cells were measured with a reference radiation thermometer realized in both a single-zone furnace and a three-zone furnace in order to investigate furnace effect. The transition temperatures in terms of ITS-90 were determined to be \(1324.18\,{^{\circ }}\hbox {C}\) and \(1491.61\,{^{\circ }}\hbox {C}\) with the corresponding combined standard uncertainty of \(0.44\,{^{\circ }}\hbox {C}\) and \(0.31\,{^{\circ }}\hbox {C}\) for Co–C and Pd–C, respectively, taking into account of the differences of two different types of furnaces used. The determined ITS-90 temperatures are also compared with that of INRIM cells obtained using the same reference radiation thermometer and the same furnaces with the same settings during a previous bilateral comparison exercise (Battuello et al. in Int J Thermophys 35:535–546, 2014). The agreements are within \(k=1\) uncertainty for Co–C cell and \(k = 2\) uncertainty for Pd–C cell. Shapes of the plateaus of NMC cells and INRIM cells are compared too and furnace effects are analyzed as well. The melting curves of the Co–C and Pd–C cells realized in the single-zone furnace are also measured by a Pt/Pd thermocouple, and the preliminary results are presented as well.  相似文献   

13.
The High speed cast iron, which is used for hot rolling parts, needs high fracture toughness and wear resistance. To improve these properties, the control of eutectic carbides, M3C, M7C3, M6C and MC is important by adding elements such as Cr, W, V and Mo.The aim of this study is to estimate which carbide will solidify under certain solidification conditions and compositions. This prediction criterion can be gained by measuring the interface temperature of each carbide in various samples with different solute elements, composition and growth rate.In this report, the solidified temperature of γ+M2C and γ+M6C eutectic carbide in the Fe–Mo–C ternary system in the composition range near to the eutectic monovariant line, was measured during the unidirectional solidification process. The relationship between solidified interface temperature and growth rate was obtained. In eutectic solidification along the γ+M6C monovariant line, a coefficient of undercooling, the k value, was obtained.The authors have already measured the k values of other eutectic carbides, such as γ+M3C, austenite+M7C3, and γ+VC in Fe–Cr–C and Fe–V–C system. The paper also discusses the relationships between these properties of eutectic carbides.  相似文献   

14.
Poly(methylsilsesquioxane) (CH3SiO1.5)n (PMS) loaded with 40 vol.% Si-filler powder was pyrolyzed in inert atmosphere up to 1400 °C to fabricate Si–O–C composite ceramics. The evolution of the interface microstructure between the filler and the matrix was studied by high resolution electron microscopy (HREM), energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. While below pyrolysis temperatures of 1000 °C no filler reaction was observed (inert filler regime), a porous interface layer of nanosized ß-SiC was formed at reaction temperatures above 1200 °C. Due to a high fraction of open porosity of 13% (1000 °C) to 19% (1400 °C) in the polymer-derived Si–O–C matrix, gas-phase transport and reaction processes involving CO and SiO as the dominant species are likely to occur at the interface boundary layer.  相似文献   

15.
The phase–field model for binary alloys by Kim et al. is briefly introduced and the main difference in the definition of free energy density in interface region between the models by Kim et al. and by Wheeler et al. is di cussed. The governing equations for a dilute binary alloy are derived and the phase-field parameters are obtained at a thin interface limit. The examples of the phase–field simulation on Ostwald ripening, isothermal dendrite growth and particle/interface interaction for Fe–C alloys are demonstrated. In Ostwald ripening, it is shown that small solid particles preferably melt out and then large particles agglomerate. In isothermal dendrite growth, the kinetic coefficient dependence on growth rate is examined for both the phase-field model and the dendrite growth model by Lipton et al. The growth rate by the dendrite model shows strong kinetic coefficient dependence, though that by the phase–field model is not sensitive to it. The particle pushing and engulfment by interface are successfully reproduced and the critical velocity for the pushing/engulfment transition is estimated. Through the simulation, it is shown that the phase-field model correctly reproduces the local equilibrium condition and has the wide potentiality to the applications on solidification.  相似文献   

16.
The High speed cast iron, which is used for hot rolling parts, needs high fracture toughness and wear resistance. To improve these properties, the control of eutectic carbides, M3C, M7C3,M6C and MC is important by adding elements such as Cr, W, V and Mo.

The aim of this study is to estimate which carbide will solidify under certain solidification conditions and compositions. This prediction criterion can be gained by measuring the interface temperature of each carbide in various samples with different solute elements, composition and growth rate.

In this report, the solidified temperature of γ + M2C and γ + M6C eutectic carbide in the Fe–Mo–C ternary system in the composition range near to the eutectic monovariant line, was measured during the unidirectional solidiication process. The relationship between solidified interface temperature and growth rate was obtained. In eutectic solidification along the γ + M6C monovariant line, a coefficient of undercooling, the k value, was obtained.

The authors have already measured the k values of other eutectic carbides, such as γ + M3C, austenite + M7C3, and γ + VC in Fe–Cr–C and Fe–V–C system. The paper also discusses the relationships between these properties of eutectic carbides.  相似文献   

17.
《Composites Part A》1999,30(4):577-581
To enhance the oxidation resistance of a ceramic matrix composite, a C–B–Si interface layer was applied between the fiber and the matrix. The layer was deposited on the fiber by chemical vapor deposition. Three types of coatings were prepared: A1, A2 (multilayers of graphite layer/B–C–Si crystalline layer/graphite layer) and B1 (monolayer of B and C containing graphite). The multilayer coated CMC retained 88–97% of the original strengths after oxidation at 1523 K for 36 ks. The monolayer coated CMC degraded to 55% of its original strength after oxidation, but had a high fracture toughness (28 MPa m1/2) before oxidation. The differences of the oxidation resistance and fracture toughness were discussed in relation to the microstructure of the coatings.  相似文献   

18.
Three types of composite nanotube heterostructures (two double-layered and one triple-layered structure) are synthesized by simple heat treatment, forming SiC–SiO2, C–SiO2, and C–SiC–SiO2 composite coaxial nanotubes. These multilayered composite nanotubes consist of several components with different electrical properties, for example, metal, semiconductor, and insulator components. In particular, C–SiC–SiO2 triple-layered nanotubes with metallic, semiconducting, and insulating layers are synthesized for the first time. These multilayered nanotubes can be expected to find applications in nanoscale heterostructure electronic and optical devices.  相似文献   

19.
Abstract

Effect of aluminium and carbon content on the microstructure and mechanical properties of Fe–Al–C alloys has been investigated. Alloys were prepared by combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot forged and hot rolled at 1373 K. As rolled alloys were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to understand the microstructure of these alloys. The ternary Fe–Al–C alloys containing 10·5 and 13 wt-%Al showed the presence of three phases: FeAl with disordered bcc structure, Fe3Al with ordered DO3 structure and Fe3AlC0·5 precipitates with L′12 structure. Addition of high concentration of carbon to these alloys resulted in excellent hot workability and superior tensile at room temperature as well as tensile and creep properties at 873 K. An increase in Al content from 9 to 13 wt-% in Fe–Al–C alloys containing the same levels of carbon has no significant influence on strength and creep properties at 873 K, however resulted in significant improvement in room temperature strength accompanied by a reduction in room temperature ductility.  相似文献   

20.
To improve the mechanical properties and oxidation-resistance properties, a C–TaC–C multi-interlayer structure was introduced in carbon/carbon (C/C) composites by chemical vapor infiltration. Compared with conventional C/C composites, a higher fracture toughness and strength have been achieved by using the C–TaC–C multi-interlayer. In addition, the composites also exhibit a higher preliminary oxidation temperature and a lower mass loss at high temperatures. The oxidation rate of the composites increases with temperature increasing in the range of 700–1300 °C, reaching a maximum value at 1300 °C, then decreases in 1300–1400 °C. A hexagonal structure of Ta2O5 phase is obtained when being oxidized at 700–800 °C, and it transforms to an orthorhombic phase at temperatures above 900 °C. The structures of C–TaC–C multi-interlayer are intact without cracks or porosities after being oxidized at 700–800 °C. In 900–1300 °C, the composites are oxidized uniformly with the formation of pores. At temperatures above 1300 °C, there are oxidation and non-oxidation regions with the oxidation process being controlled by diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号