首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DC-coupled silicon bipolar amplifier IC, for operation in future multigigabit optical communication systems, has been fabricated using ⩾30 GHz double-polysilicon transistors. Using a novel HF connection technique for reducing the bondwire inductance, we have succeeded in the fabrication of a 14 dB gain amplifier IC, with a flatness better than ±0.5 dB, combined with a -3 dB bandwidth of 12.8 GHz. This is the highest bandwidth ever reported for a bonded amplifier circuit in any semiconductor technology  相似文献   

2.
This letter describes practical reflection-mode amplifiers utilising active-medium-propagation (a.m.p.) devices. A single-stage reflection-mode amplifier provided 24 dB gain and 350 MHz bandwidth at 15 GHz. A 2-stage reflection-mode amplifier provided 30 dB gain and 500 MHz bandwidth at 15 GHz.  相似文献   

3.
The designs and performances of a 2-24 GHz distributed matrix amplifier and 1-20 GHz 2-stage Darlington coupled amplifier based on an advanced HBT MBE profile that increases the bandwidth response of the distributed and Darlington amplifiers by providing lower base-emitter and collector-base capacitances are presented. The matrix amplifier has a 9.5 dB nominal gain and a 3-dB bandwidth to 24 GHz. This result benchmarks the highest bandwidth reported for an HBT distributed amplifier. The input and output VSWRs are less than 1.5:1 and 2.0:1, respectively. The total power consumed is less than 60 mW. The chip size measures 2.5×2.6 mm2. The 2-stage Darlington amplifier has 7 dB gain and 3-dB bandwidth beyond 20 GHz. The input and output VSWRs are less than 1.5:1 and 2.3:1, respectively. This amplifier consumes 380 mW of power and has a chip size of 1.66×1.05 mm2   相似文献   

4.
We describe distributed amplifiers built using advanced circuit design techniques to improve gain and noise performance at low frequencies. Using these techniques we have developed an amplifier IC with a 0-36 GHz bandwidth and a noise figure of 4 dB at low frequencies. This frequency range starting from 0 Hz makes it possible to use the IC as a baseband amplifier for SDH optical transmission systems and this noise figure is about 1 dB better than conventional distributed amplifiers. We also present another amplifier IC built using our loss compensation technique to improve high-frequency performance of the amplifier. This IC has a 0-44-GHz bandwidth, which is the widest among all reported GaAs MESFET baseband amplifiers  相似文献   

5.
A multiquantum-well optical amplifier for 1.5-μm wavelength operation using alternating tensile and compressively strained wells in the active region is described. For each bias level measured, the polarization sensitivity of the amplifier gain is 1 dB or less averaged over the gain bandwidth. This amplifier is suitable for integration with other optical devices in photonic integrated circuits which require polarization-independent gain  相似文献   

6.
An InP double hetero-junction bipolar transistor (DHBT) distributed power amplifier MMIC with 35 dB gain, 42 GHz bandwidth and 15 dBm output power is reported. This represents the highest power and largest gain reported over this bandwidth from a single chip HBT amplifier. A lumped preamplifier with a novel distributed output is used to obtain high gain and wide bandwidth at these power levels.  相似文献   

7.
A wideband AGC amplifier is monolithically integrated using an advanced Si-bipolar IC technology, SICOS. The fabricated IC exhibits an 8·4 dB maximum gain, 17 dB variable gain and 1·1 GHz bandwidth. It is shown that the SICOS technology is feasible for developing an equalising amplifier with a 37 dB gain and 700 MHz bandwidth for 400 Mbit/s optical repeaters.  相似文献   

8.
Experimental results on gain characteristics of an Er3+-doped multicomponent glass single-mode optical-fiber amplifier are reported. This amplifier shows a gain spectrum with twin gain peaks of 1.535 and 1.543 μm, providing a broadened gain bandwidth. The apparent 6-dB gain bandwidth is 12 nm. Furthermore, the signal gain of 17 dB and 15-mW pump power is realized at a signal wavelength of 1.536 μm, and a signal gain coefficient of 1.4 dB/mW is achieved  相似文献   

9.
Main amplifier, AGC amplifier, and preamplifier ICs have been designed and fabricated using an advanced silicon bipolar process to provide the required characteristics of repeater circuits for a gigabit optical fiber transmission system. The bipolar technology used involved a separation width of 0.3 /spl mu/m between the emitter and the base electrode. New circuit techniques were also used. The differential type main amplifier has a peaking function which can be varied widely by means of DC voltage supplied at the outside IC terminal. A bandwidth which can be varied to about three times the value for a nonpeaking amplifier is easily obtained. The gain and maximum 3-dB down bandwidth were 4 dB and 4 GHz, respectively. The main feature of the AGC amplifier is that the diodes are connected to the emitters of the differential transistor pair to improve the linearity. The maximum gain and 3-dB down bandwidth were 15 dB and 1.4 GHz, respectively, and a dynamic range of 25 dB was obtained. The preamplifier has a shunt-series feedback configuration. Furthermore, a gain and 3-dB down bandwidth of 22 dB and 2 GHz, respectively, were achieved with an optimum circuit design. The noise figure obtained was 3.5 dB.  相似文献   

10.
Ultra-wideband CMOS low noise amplifier   总被引:2,自引:0,他引:2  
A two-stage ultra-wideband CMOS low noise amplifier (LNA) is proposed. The first stage is optimised for wideband input matching and low noise figure, while the second stage is optimised to extend the -3 dB bandwidth of the overall amplifier. The combination of stages can provide lower noise figure and wider bandwidth simultaneously over that of previously reported feedback-based CMOS amplifiers. The implemented LNA shows a peak gain of 13.5 dB, more than 8.5 dB of input return loss, and a noise figure of 2.5-7.4 dB over a -3 dB bandwidth from 2 to 9 GHz with DC power consumption of 25.2 mW.  相似文献   

11.
利用90-nm InAlAs/InGaAs/InP HEMT工艺设计实现了两款D波段(110~170 GHz)单片微波集成电路放大器。两款放大器均采用共源结构,布线选取微带线。基于器件A设计的三级放大器A在片测试结果表明:最大小信号增益为11.2 dB@140 GHz,3 dB带宽为16 GHz,芯片面积2.6×1.2 mm2。基于器件B设计的两级放大器B在片测试结果表明:最大小信号增益为15.8 dB@139 GHz,3dB带宽12 GHz,在130~150 GHz频带范围内增益大于10 dB,芯片面积1.7×0.8 mm2,带内最小噪声为4.4 dB、相关增益15 dB@141 GHz,平均噪声系数约为5.2 dB。放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数。该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义。  相似文献   

12.
A monolithic three-stage resistive-feedback amplifier has been developed for the 2-8-GHz band. This amplifier uses a novel approach which incorporates three stages with varying FET gate widths. The measured gain is 19 ± 1 dB and the VSWR is 2.3:1 in this band. The amplifier chip has a noise figure of ∼6 dB over the bandwidth. The chip size is less than 2.0 × 1.6 mm2and includes the bias circuitry. The amplifier also has AGC capability with more than 20 dB of gain control.  相似文献   

13.
This paper reports on the design, fabrication, and characterization of a lumped broadband amplifier in SiGe bipolar technology. The measured differential gain is 20 dB with a 3-dB bandwidth of more than 84 GHz, which is the highest bandwidth reported so far for broadband SiGe bipolar amplifiers. The resulting gain bandwidth product (GBW) is more than 840 GHz. The amplifier consumes a power of 990 mW at a supply of -5.5 V.  相似文献   

14.
程骏  李海华 《电子器件》2013,36(2):206-210
基于Siemens的NPN射频晶体管BFP420,设计出一款适合于S波段的低噪声放大器,本设计使用了宽带匹配技术,结合微带线和集总元件设计出宽带的匹配网络。放大器适用频率范围:1.8 GHz~3.2 GHz,可用带宽1.4 GHz,相对带宽56%,属超宽带低噪声放大器。测试结果表明,在可用频段范围内,放大器增益波动3.7 dB,输入驻波比VSWR<1.8 dB,输出驻波比VSWR<1.295 dB;1.8 GHz增益G=12.53 dB、噪声系数NF=1.128 dB;3.2 GHz增益G=8.79 dB、噪声系数NF=1.414dB。本设计可满足无线蓝牙、WIFI,Zigbee等多种2.4 GHz主流ISM无线设备的应用要求。  相似文献   

15.
An optimum design of a low noise amplifier (LNA) in S-band working at 2-4 GHz is described. Choosing FHC40LG high electronic mobility transistor (HEMT), the noise figure of the designed amplifier simulated by Microwave Office is no more than 1.5 dB, meanwhile the gain is no less than 20 dB in the given bandwidth. The simulated results agree with the performance of the transistor itself well in consideration of its own minimum noise figure (0.3 dB) and associated gain (15.5 dB). Simultaneously, the stability factor of the designed amplifier is no less than 1 in the given bandwidth.  相似文献   

16.
An optimum design of a low noise amplifier (LNA) in S-band working at 2-4 GHz is described. Choosing FHC40LG high electronic mobility transistor (HEMT), the noise figure of the designed amplifier simulated by Microwave Office is no more than 1.5 dB, meanwhile the gain is no less than 20 dB in the given bandwidth. The simulated results agree with the performance of the transistor itself well in consideration of its own minimum noise figure (0.3 dB) and associated gain (15.5 dB). Simultaneously, the stability factor of the designed amplifier is no less than 1 in the given bandwidth.  相似文献   

17.
本文描述了利用双栅MESFET作宽带可变增益放大器的原理.业已制成的二级级联放大器,利用双栅MESFET控制,在20MHz带宽内(1dB带宽)增益可从6~36dB连续变化,而其输出的中心频率和通带特性保持不变.  相似文献   

18.
折叠式共源共栅结构能够提供足够高的增益,并且能够增大带宽、提高共模抑制比和电源电压抑制比.基于Chartered 0.35 μm工艺,设计了一种折叠式共源共栅结构的差分输入运算放大器,给出了整个电路结构.Spectre仿真结果表明,该电路在3.3V电源电压下直流开环增益为121.5dB、单位增益带宽为12 MHz、相位裕度为61.4°、共模抑制比为130.1dB、电源电压抑制比为105 dB,达到了预期的设计目标.  相似文献   

19.
This paper discusses the stability problem, output power, saturation level, and noise figure of Esaki diode amplifiers, and describes design considerations of the broadband circulator type amplifier with a large negative conductance diode. An experimental amplifier with a diode which has a negative resistance of -25 ohms is also described. The amplifier has a 3 dB bandwidth of 20 per cent, 18 dB gain, and a 3.6 dB noise figure including 0.3 dB insertion loss of the circulator. The output level for which the gain is 1 dB lower than the small signal gain is -17 dBm. These experimental results are in fair agreement with those estimated theoreticaly.  相似文献   

20.
为解决PWM控制器中输出电压与基准电压的误差放大问题,设计了一款高增益、宽带宽、静态电流小的新型误差放大器,通过在二级放大器中间增加一级缓冲电路,克服补偿电容的前馈效应,同时消除补偿电容引入的零点。在Cadence软件平台上,经过交流和瞬态仿真,电路0 dB带宽达到55.5 MHz,电压开环增益约67.2 dB,相位裕度为83.0°上升建立时间和下降建立时间分别为6.7 V/μs和5.7 V/μs共模抑制比为49.17 dB,电源抑制比为71.39 dB。该误差放大器已经应用到了PWM芯片中,使得PWM最大、最小占空比可调,大幅提升了芯片系统的整体性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号