首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant disease resistance system involves a very complex regulatory network in which jasmonates play a key role in response to external biotic or abiotic stresses. As inhibitors of the jasmonic acid (JA) signaling pathway, JASMONATE ZIM domain (JAZ) proteins have been identified in many plant species, and their functions are gradually being clarified. In this study, 26 JAZ genes were identified in tomato. The physical and chemical properties, predicted subcellular localization, gene structure, cis-acting elements, and interspecies collinearity of 26 SlJAZ genes were subsequently analyzed. RNA-seq data combined with qRT-PCR analysis data showed that the expression of most SlJAZ genes were induced in response to Stemphylium lycopersici, methyl jasmonate (MeJA) and salicylic acid (SA). Tobacco rattle virus RNA2-based VIGS vector (TRV2)-SlJAZ25 plants were more resistant to tomato gray leaf spots than TRV2-00 plants. Therefore, we speculated that SlJAZ25 played a negative regulatory role in tomato resistance to gray leaf spots. Based on combining the results of previous studies and those of our experiments, we speculated that SlJAZ25 might be closely related to JA and SA hormone regulation. SlJAZ25 interacted with SlJAR1, SlCOI1, SlMYC2, and other resistance-related genes to form a regulatory network, and these genes played an important role in the regulation of tomato gray leaf spots. The subcellular localization results showed that the SlJAZ25 gene was located in the nucleus. Overall, this study is the first to identify and analyze JAZ family genes in tomato via bioinformatics approaches, clarifying the regulatory role of SlJAZ25 genes in tomato resistance to gray leaf spots and providing new ideas for improving plant disease resistance.  相似文献   

2.
Our aim in the experiment was to study the effects of methyl jasmonates (MeJA) on the active compounds of rosemary suspension cells, the metabolites’ change of contents under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 μM MeJA (M100). The results demonstrated that MeJA treatments promoted the accumulation of rosmarinic acid (RA), carnosic acid (CA), flavonoids, jasmonate (JA), gibberellin (GA), and auxin (IAA); but reduced the accumulations of abscisic acid (ABA), salicylic acid (SA), and aspartate (Asp). In addition, 50 and 100 μM MeJA promoted the accumulation of alanine (Ala) and glutamate (Glu), and 50 μM MeJA promoted the accumulation of linoleic acid and alpha-linolenic acid in rosemary suspension cells. Comparative RNA-sequencing analysis of different concentrations of MeJA showed that a total of 30, 61, and 39 miRNAs were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of the target genes of the differentially expressed miRNAs showed that plant hormone signal transduction, linoleic acid, and alpha-linolenic acid metabolism-related genes were significantly enriched. In addition, we found that miR160a-5p target ARF, miR171d_1 and miR171f_3 target DELLA, miR171b-3p target ETR, and miR156a target BRI1, which played a key role in rosemary suspension cells under MeJA treatments. qRT-PCR of 12 differentially expressed miRNAs and their target genes showed a high correlation between the RNA-seq and the qRT-PCR result. Amplification culture of rosemary suspension cells in a 5 L stirred bioreactor showed that cell biomass accumulation in the bioreactor was less than that in the shake flask under the same conditions, and the whole cultivation period was extended to 14 d. Taken together, MeJA promoted the synthesis of the active compounds in rosemary suspension cells in a wide concentration range via concentration-dependent differential expression patterns. This study provided an overall view of the miRNAs responding to MeJA in rosemary.  相似文献   

3.
13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s−1·mg protein−1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.  相似文献   

4.
Jasmonic acid (JA) is an important hormone that functions in plant defense. cam1 and wrky53 mutants were more resistant to Spodoptera littoralis than in the wild-type (WT) Arabidopsis group. In addition, JA concentration in cam1 and wrky53 mutants was higher compared with the WT group. To explore how these two proteins affect the resistance of Arabidopsis plants, we used a yeast two-hybrid assay, firefly luciferase complementation imaging assay and in vitro pull-down assay confirming that calmodulin 1 (CAM1) interacted with WRKY53. However, these two proteins separate when calcium concentration increases in Arabidopsis leaf cells. Then, electrophoretic mobility shift assay and luciferase activation assay were used to verify that WRKY53 could bind to lipoxygenases 3 (LOX3) and lipoxygenases 4 (LOX4) gene promoters and negatively regulate gene expression. This study reveals that CAM1 and WRKY53 negatively regulate plant resistance to herbivory by regulating the JA biosynthesis pathway via the dissociation of CAM1-WRKY53, then the released WRKY53 binds to the LOXs promoters to negatively regulate LOXs gene expression. This study reveals WRKY53′s mechanism in insect resistance, a new light on the function of WRKY53.  相似文献   

5.
6.
7.
8.
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.  相似文献   

9.
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.  相似文献   

10.
11.
Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their “success” is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.  相似文献   

12.
We evaluated the costs and benefits of continuous high-level expression of defenses relative to naturally-induced defenses in field-grown Datura wrightii in the presence and absence of herbivores. We induced D. wrightii plants with monthly applications of the plant hormone methyl jasmonate (MeJA) and assessed levels of inducible proteinase inhibitors (Pins). MeJA application increased Pin production by 124?%, whereas the increase in Pins due to herbivory was more modest (36?%). Pin induction was costly and significantly reduced plant fitness compared to unmanipulated plants both in the presence and absence of herbivores. Although MeJA-treated plants exposed to herbivory suffered significantly less herbivore damage than unmanipulated plants exposed to herbivory, this was not accompanied by a corresponding fitness benefit. In contrast to glasshouse studies in which protected plants never expressed Pins, Pin induction occurred in field-grown plants not treated with MeJA and completely protected from herbivory. Subsequent experiments confirmed that putative herbivore defenses can be induced abiotically in D. wrightii as: 1) Pin levels did not differ significantly between field-grown plants protected from herbivory and plants exposed to chronic herbivory over the full season; and 2) plants exposed to ambient UV-B light in the absence of herbivory expressed low levels of Pins after two wk of exposure, whereas plants protected from UV-B remained uninduced. The costs of induced responses may be relatively easily determined under field conditions, but there may be many inducing agents in the field, and the benefits of induction may be difficult to associate with any single inducing agent.  相似文献   

13.
14.
Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells’ death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.  相似文献   

15.
Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.  相似文献   

16.
The effects of methyl jasmonate (MeJA), an elicitor of plant defense mechanisms, on the biosynthesis of diosgenin, a steroidal saponin, were investigated in six fenugreek (Trigonella foenum-graecum) varieties (Gujarat Methi-2, Kasuri-1, Kasuri-2, Pusa Early Branching, Rajasthan Methi and Maharashtra Methi-5). Treatment with 0.01% MeJA increased diosgenin levels, in 12 days old seedlings, from 0.5%–0.9% to 1.1%–1.8%. In addition, MeJA upregulated the expression of two pivotal genes of the mevalonate pathway, the metabolic route leading to diosgenin: 3-hydroxy-3-methylglutaryl-CoA reductase (HMG) and sterol-3-β-glucosyl transferase (STRL). In particular, MeJA increased the expression of HMG and STRL genes by 3.2- and 22.2-fold, respectively, in the Gujarat Methi-2 variety, and by 25.4- and 28.4-fold, respectively, in the Kasuri-2 variety. Therefore, MeJA may be considered a promising elicitor for diosgenin production by fenugreek plants.  相似文献   

17.
The oat (Avena sativa L.) is a grain of the Poaceae grass family and contains many powerful anti-oxidants, including avenanthramides as phenolic alkaloids with anti-inflammatory, anti-oxidant, anti-itch, anti-irritant, and anti-atherogenic activities. Here, the treatment of germinating oats with methyl jasmonate (MeJA) or abscisic acid (ABA) resulted in 2.5-fold (582.9 mg/kg FW) and 2.8-fold (642.9 mg/kg FW) increase in avenanthramide content, respectively, relative to untreated controls (232.6 mg/kg FW). Moreover, MeJA and ABA co-treatment synergistically increased avenanthramide production in germinating oats to 1505 mg/kg FW. Individual or combined MeJA and ABA treatment increased the expression of genes encoding key catalytic enzymes in the avenanthramide-biosynthesis pathway, including hydroxycinnamoyl-CoA:hydrocyanthranilate N-hydroxycinnamoyl transferase (HHT). Further analyses showed that six AsHHT genes were effectively upregulated by MeJA or ABA treatment, especially AsHHT4 for MeJA and AsHHT5 for ABA, thereby enhancing the production of all three avenanthramides in germinating oats. Specifically, AsHHT5 exhibited the highest expression following MeJA and ABA co-treatment, indicating that AsHHT5 played a more crucial role in avenanthramide biosynthesis in response to MeJA and ABA co-treatment of germinating oats. These findings suggest that elicitor-mediated metabolite farming using MeJA and ABA could be a valuable method for avenanthramide production in germinating oats.  相似文献   

18.
Gibberella stalk rot (GSR) by Fusarium graminearum causes significant losses of maize production worldwide. Jasmonates (JAs) have been broadly known in regulating defense against pathogens through the homeostasis of active JAs and COI-JAZ-MYC function module. However, the functions of different molecular species of JAs and COI-JAZ-MYC module in maize interactions with Fusarium graminearum and regulation of diverse metabolites remain unknown. In this study, we found that exogenous application of MeJA strongly enhanced resistance to GSR. RNA-seq analysis showed that MeJA activated multiple genes in JA pathways, which prompted us to perform a genome-wide screening of key JA signaling components in maize. Yeast Two-Hybrid, Split-Luciferase, and Pull-down assays revealed that the JA functional and structural mimic coronatine (COR) functions as an essential ligand to trigger the interaction between ZmCOIa and ZmJAZ15. By deploying CRISPR-cas9 knockout and Mutator insertional mutants, we demonstrated that coi1a mutant is more resistant, whereas jaz15 mutant is more susceptible to GSR. Moreover, JA-deficient opr7-5opr8-2 mutant displayed enhanced resistance to GSR compared to wild type. Together, these results provide strong evidence that ZmJAZ15 plays a pivotal role, whereas ZmCOIa and endogenous JA itself might function as susceptibility factors, in maize immunity to GSR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号