首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groups of young rats were fed a basal diet with beef tallow (BT) or corn oil (CO) added to provide 4 or 19% energy as linoleic acid. Mitochondria isolated from the livers of the rats fed the CO contained a significantly lower concentration of b-type cytochrome and significantly higher concentrations of cytochromes c, c1 and aa3. Cytochrome c oxidase activity also was elevated. The spectral characteristics of the b-type cytochrome varied between the 2 groups. The mitochondria from the rats fed CO contained relatively more of the cytochrome b-558 component whereas mitochondria from the BT group contained more of the cytochrome b-562 component. The classical antimycin A inhibition of electron transport between cytochromes b and c1 was partially bypassed in mitochondria with the more fluid membrane. The activation energy for cytochrome c oxidase in mitochondria from this group was significantly higher. These differences may be traced to the physical characteristics of the inner mitochondrial membrane.  相似文献   

2.
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. However, the effects of Rd on spinal cord mitochondrial dysfunction and underlying mechanisms are still obscure. In this study, we sought to investigate the in vitro effects of Rd on mitochondrial integrity and redox balance in isolated spinal cord mitochondria. We verified that Ca2+ dissipated the membrane potential, provoked mitochondrial swelling and decreased NAD(P)H matrix content, which were all attenuated by Rd pretreatment in a dose-dependent manner. In contrast, Rd was not able to inhibit Ca2+ induced mitochondrial hydrogen peroxide generation. The results of Western blot showed that Rd significantly increased the expression of p-Akt and p-ERK, but had no effects on phosphorylation of PKC and p38. In addition, Rd treatment significantly attenuated Ca2+ induced cytochrome c release, which was partly reversed by antagonists of Akt and ERK, but not p-38 inhibitor. The effects of bisindolylmaleimide, a PKC inhibitor, on Rd-induced inhibition of cytochrome c release seem to be at the level of its own detrimental activity on mitochondrial function. Furthermore, we also found that pretreatment with Rd in vivo (10 and 50 mg/kg) protected spinal cord mitochondria against Ca2+ induced mitochondrial membrane potential dissipation and cytochrome c release. It is concluded that Rd regulate mitochondrial permeability transition pore formation and cytochrome c release through protein kinases dependent mechanism involving activation of intramitochondrial Akt and ERK pathways.  相似文献   

3.
Galactosylsphingosine, glucosylsphingosine and sphingosine all inhibited cytochrome c oxidase activity in mitochondria from rat liver; more than 50% inhibition was caused by 5 μM lipid (0.1 μmol/mg mitochondrial protein). However, these lysosphingolipids did not suppress the activity of purified cytochrome c oxidase. When the enzyme was “reconstituted” with phosphatidylcholine, the lysosphingolipids clearly inhibited the activity. On the other hand, galactosylsphingosine, glucosylsphingosine and sphingosine all hemolyzed erythrocytes, indicating that lysosphingolipids can disrupt the membrane. Thus, it appears that the inhibition of cytochrome c oxidase, a membrane-bound enzyme in mitochondria, is due to perturbation of the environment of the enzyme and that the primary attacking site of the lysosphingolipids is the membrane. Because the potency to inhibit cytochrome c oxidase and to hemolyze erythrocytes did not differ among these lysosphingolipids and because galactosylceramide caused neither inhibition of cytochrome c oxidase nor hemolysis, the free amino group in the lysosphingolipids seems to be essential to give the effects. In addition, both inhibition of cytochrome c oxidase and hemolysis caused by lysosphingolipids were completely abolished by albumin, suggesting that toxic effects of lysosphingolipids may not be apparent in blood.  相似文献   

4.
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria—the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.  相似文献   

5.
6.
Mitochondria modified electrodes have been developed and characterized that utilize whole mitochondria isolated from tubers and immobilized within a quaternary ammonium modified Nafion membrane on a carbon electrode that can oxidize pyruvate and fatty acids. Detailed characterization of the performance of these mitochondria modified electrodes has been accomplished by coupling the mitochondria-based bioanode with a commercial air breathing cathode in a complete pyruvate/air biofuel cell. The studies included the effect of fuel (pyruvate) concentration, mitochondria lysing, temperature and pH on the performance of the mitochondria catalyzed, pyruvate/air biofuel cell. Effect of oxygen and cytochrome c oxidase inhibitors on biofuel cell performance has allowed us to further understand the mechanism of electron transfer with the carbon electrode.  相似文献   

7.
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).  相似文献   

8.
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.  相似文献   

9.
Electrochemical multielectron reactions in photosynthesis and respiration are evaluated by thermodynamic and kinetic analysis. Kharkats and Volkov [Yu.I. Kharkats, A.G. Volkov, Biochim. Biophys. Acta 891 (1987) 56] were the first to present proof that cytochrome c oxidase reduces molecular oxygen by synchronous multielectron mechanism without O2 intermediate formation. After this pioneering observation, it became clear that the first step of oxygen reduction is two-electron concerted process. The energy for the H+-pump of cytochrome oxidase is liberated when the third and fourth electrons are added in the last two steps of water formation independent of the reaction pathway. Electrochemical principles govern many biological properties of organisms, such as the generation of electric fields, and the conduction of fast excitation waves. These properties are supported by the function of a variety of natural nanodevices. Ionic channels, as natural nanodevices, control the plasma membrane potential, and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. In plants, excitation waves are possible mechanisms for intercellular and intracellular communication in response to environmental changes. The role of electrified nanointerface of the plasma membrane in signal transduction is discussed as well.  相似文献   

10.
11.
A phagemid (pING4) carrying the yeast iso-1-cytochrome c genewas constructed which bears all the elements necessary for replicationin yeast and bacteria and may be converted into a single-strandedform of DNA for site-directed mutagenesis and nucleotide sequencing.The recombinant vector was used to create a complete set of19 amino acid changes at position 82, a phylogenetically conservedphenylalanine residue in mitochondrial cytochrome c. All thedifferent forms of cytochrome c were functional in vivo, basedupon their ability to support respiration when the mutant proteinswere expressed in a yeast strain (otherwise devoid of cytochromec) grown on non-fermentable carbon sources, with only the straincontaining the Cys82 variant having a substantially decreasedgrowth rate. These results are interpreted in terms of the availablestructural and functional information previously reported ona subset of cytochrome c proteins with mutations at position82.  相似文献   

12.
Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson’s disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.  相似文献   

13.
The response to cold of liver and heart membrane lipid composition and mitochondrial respiration in reared sea bass (Dicentrarchus labrax L.) was investigated. Fish acclimation was followed during the natural seasonal cycle from August to March. The data on the fatty acid composition of liver and heart polar lipids and on total lipids of liver mitochondria and microsomes did not indicate any increase in unsaturation in response to cold. The enzyme complexes of the liver and heart mitochondrial respiratory chain showed a repeated negative compensation for cold acclimation. The constancy of the break in the Arrhenius plot of liver cytochrome oxidase (EC 1.9.3.1) was consistent with the lack of homeoviscous adaptation of membrane lipids. A thermoadaptive strategy based on the reduction of sea bass metabolic activity is suggested.  相似文献   

14.
Selenium is an essential micronutrient for humans. Much of selenium’s beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells.  相似文献   

15.
16.
Copper (Cu) is an important coenzyme factor in cell signaling, such as cytochrome c oxidase (Complex IV). Metabolism plays an important role in regulating the fate of mammalian cells. The aim of this study is to experimentally investigate the effect of copper on cell metabolism in the dermal papilla cells of the Rex rabbit. In this study, Cu promoted proliferation of dermal papilla cells (p = 0.0008) while also increasing levels of cellular CIII, CIV, Complex IV and ATP. Moreover, fifty metabolites that were significantly different between Cu and controls were identified as potential biomarkers of Cu stimulation. Copper-stimulated cells had altered levels of arachidonic acid derivatives, S-glutamic acid, and citric acid, which were primarily linked to two different pathways: arachidonic acid metabolism (p < 0.0001) and alanine, aspartate and glutamate metabolism (p = 0.0003). The addition of Cu can increase the proliferation of Rex rabbit dermal papilla cells. Increased levels of ubiquinol-cytochrome c reductase complex core protein 2 (CIII) and cytochrome c oxidase subunit 1 (CIV) were associated with the increased levels of cellular cytochrome c oxidase (Complex IV) and adenosine triphosphate (ATP). In a word, copper promotes cell proliferation by maintaining the function of the cellular mitochondrial electron transport chain (ETC) pathway.  相似文献   

17.
Effects of growth hormone on phospholipid composition and fatty acyl distribution were studied in liver mitochondria of hypophysectomized rats. After hypophysectomy, only cardiolipin showed a 25% decrease. Its fatty acyl distribution, which consisted mainly of linoleic acid (55–60%) and oleic acid (20%), was unchanged. In phosphatidylcholine and phosphatidylethanolamine fractions the contents of docosahexaenoic and arachidonic acids were decreased with a concomitant increase in linoleic acid content. These changes could be accounted for by small but significant decreases in the activities of Δ9-desaturase (sucrose-induced), Δ5-desaturase and mitochondrial elongation enzymes. The activities of Δ6-desaturase NADH cytochrome b5 ferri-reductase, cytochrome b5, NADH cytochrome c reductase and microsomal elongation enzymes remained virtually unchanged. Injection of bovine growth hormone daily for seven days restored cardiolipin and fatty acyl distribution and the enzyme activities. From these and other results, we conclude that growth hormone-dependent increase of respiratory activity of liver mitochondria may be partly mediated by the hormonal effects on membrane lipid distribution.  相似文献   

18.
Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t ≤ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-μs conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 μs timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.  相似文献   

19.
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoKATP) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoKATP neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoKATP to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoKATP and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.  相似文献   

20.
The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号