首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以异形Ⅰ形截面不锈钢型材为研究对象,采用DEFORM-3D有限元软件系统对其热挤压成形过程进行数值模拟分析.研究了挤压稳态成形过程中挤压速度、摩擦系数、坯料预热温度等因素对不锈钢型材挤压过程的影响.计算结果表明,当挤压比为9、挤压速度为200mm/s、摩擦因子为0.3、模具预热温度为450℃、坯料预热温度为1050℃时,金属流动状况良好,材料的应力应交分布均匀,可有效提高模具的寿命,对指导实际生产具有积极的参考价值.  相似文献   

2.
铝合金空心型材分流模挤压成形全过程温度场的数值模拟   总被引:1,自引:0,他引:1  
采用焊合区网格重构技术,解决包括分流与焊合过程的空心型材分流模挤压成形全过程温度场模拟问题,以一种典型大断面铝合金空心型材分流模挤压成形为实例,分析挤压速度和坯料温度对模孔出口处型材最高温度及型材横断面温度分布的影响,提出合理的坯料温度和挤压速度范围。结果表明:挤压速度对模孔出口处型材横断面温度分布不均匀性的影响较大,而坯料温度的影响较小:当挤压速度由0.6 mm/s增大到3.0 mm/s,坯料温度为500℃时,模孔出口处型材横断面上最高与最低温度的差值(最大温差)由28℃增大到60℃;而当挤压速度一定,坯料温度在480~520℃变化时,型材横断面上最大温差的变化不超过3℃。6005A型材的合理挤压条件:坯料温度520℃时,挤压速度范围为0.63~0.93 mm/s;坯料温度500℃时,挤压速度范围为0.87~1.14 mm/s;坯料温度480℃时,挤压速度范围为1.10~1.34 mm/s。  相似文献   

3.
铜连续挤压扩展成形温度场的分析   总被引:1,自引:0,他引:1  
文章通过有限元数值模拟分析了铜连续挤压扩展成形中温度场的分布规律。连续挤压扩展成形过程中温升主要集中在变形和摩擦剧烈的区域。整个扩展挤压过程中最高温度出现在直角弯曲区靠近挡料块的附近,可达到700℃以上。从变形和摩擦的角度分析了坯料在挤压轮径向的温度分布的特点。从变形和传热的角度分析了金属在扩展挤压区宽度和厚度方向温度分布特点,以及温度对产品成形性的影响,并进行了现场温度测试,用热电偶采集腔体密封面和扩展腔的温度,实验结果与模拟结果吻合,为铜连续挤压扩展成形性的研究提供了依据。  相似文献   

4.
采用数值模拟方法对TC4钛合金H形截面型材热挤压过程进行热力耦合分析,获得了坯料温度的分布情况及不同工艺参数对坯料温度的影响规律,结果表明:坯料温度进入稳定挤压阶段显著升高,产热与散热达到动态平衡状态;过渡圆角处坯料的温度明显高于坯料的其他部位;坯料的温升随挤压速度、摩擦因子、挤压比以及模具预热温度的增大而增大,但随坯料预热温度的增大而减小;而坯料的温降呈相反变化规律;最终获得优选挤压工艺方案。  相似文献   

5.
利用ABAQUS软件对高温合金GH3625热挤压成形过程进行数值模拟分析,获得坯料在不同工艺参数下的温度场、应力场的分布及挤压力变化情况。结果表明,通过GH3625热压缩模拟的数据计算所得挤压力的大小与模拟结果数值上接近,为进一步的试验研究及管材加工奠定了基础。适宜的挤压参数:坯料预热温度为1 180~1 200℃、挤压速度为50mm/s、模具预热温度为400℃。此外,实际生产中应该避免模具预热至350℃,以防止坯料出现过烧现象。  相似文献   

6.
采用FVM数值模拟方法研究了铜连续挤压过程中坯料的温度场.研究结果表明,坯料与挤压轮之间的摩擦对于坯料温度的上升影响较小,坯料在连续挤压过程中温度的上升主要源自坯料的塑性变形.通过理论分析,导出了铜连续挤压产品在模具出口处的温度计算公式.结果表明,一般情况下,铜挤压产品在模具出口处的温度为490~530 ℃,主机电枢电流上升10%,产品温度将上升50 ℃,对应腔体鼻子的温度将上升13~20 ℃;通过提高挤压轮的转速不能有效提高产品温度,达不到软化产品的效果.  相似文献   

7.
搅拌摩擦焊接过程的温度场分布对焊接接头质量有非常重要的影响。本文应用ANSYS有限元分析软件对2A14-T6铝合金双轴肩搅拌摩擦焊接过程的温度场进行数值模拟,研究了焊接过程试板表面和厚度方向温度分布特征。运用热电偶测温技术对试板特征点进行温度测量,分析各特征点温度变化规律,同时验证了模拟的正确性。  相似文献   

8.
根据内花键轴零件的形状尺寸特点,分析内花键轴成形的工艺方式,运用有限元软件DEFORM-3D对内花键轴热挤压成形过程进行数值模拟,对成形过程中凸模的载荷-行程曲线和挤压件温度场进行分析,并研究坯料加预热温度和挤压速度对挤压力的影响,分析得到坯料的最佳加热温度范围为1100℃~1200℃,最合理的挤压速度为10mm/s左右,为同类零件的加工及生产提供理论依据。  相似文献   

9.
使用数值模拟Marc软件对高温合金管材热挤压进行了数值模拟,研究了挤压速度、挤压坯料初始温度、摩擦系数对管材挤压时坯料、挤压垫、挤压针的温度变化的影响。着重对挤压速度为40mm/s,摩擦系数为0.1,坯料初始温度为1000℃时的条件下的管材挤压进行了数值模拟,研究了挤压对相关零部件的温升情况。  相似文献   

10.
建立了一种截面对称的铝合金螺旋型材挤压模型,通过具有螺旋型腔的模具挤压实现铝合金螺旋型材的近净成形。基于DEFORM-3D有限元数值模拟及挤压实验,研究了铝合金坯料在挤压过程中温度场、速度场、应变场以及应力场等物理场量的分布规律,对挤压型材的晶粒组织、微观特性及硬度分布进行预测与分析。结果表明,6063铝合金在挤压温度为450℃、挤压比为22的螺旋挤压过程中,同一截面上,坯料的温度分布是不均匀的,呈螺旋梯度分布,且边部区域的应力应变、挤压速度要大于中心区域。坯料在模具型腔内流动时,与工作带接触的部位变形最为强烈,应力应变整体上升。微观组织分析表明,在螺旋挤压过程中坯料发生动态再结晶,同一截面上,晶粒沿螺旋方向偏转分布,型材边部比中部晶粒更为均匀细小,表明变形程度大的区域晶粒细化更为明显。硬度的分布呈现从中部到边部逐渐增强的趋势,表明变形程度是影响硬度分布的关键因素。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号