首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang W  Xu T  Li X  Zhu Q  Cheng A  Du F  Li D 《Lipids》2010,45(12):1139-1146
Diacylglycerol (DAG) supplementation has been shown to be associated with the reduction of fasting serum triacylglycerol (TAG) concentration, although the extent of the association is uncertain. We quantitatively examined the effect of dietary DAG on fasting serum TAG concentration by conducting a meta-analysis of randomized controlled trials. Potential papers were searched from electronic databases of Medline, Embase and Cochrane Library. Information was extracted and the net change of fasting serum TAG concentration was used as the primary outcome to examine the effect of DAG in Review Manager 4.2. Six papers with seven independent studies (298 subjects) were included into the statistic pooling. Meta-analysis with random effect model showed that DAG did not reduce the fasting serum TAG concentration (WMD: −0.07 mmol/L; 95% CI: −0.21 to 0.08 mmol/L; P = 0.37). Sensitivity analysis indicated the robustness of overall results. Fail-safe number analysis indicated that 18 studies with positive effect were necessary to reverse the reported non-significant efficacy of DAG. Weight estimation analysis indicated that the effect of DAG was influenced to some extent by the initial fasting serum TAG concentration. In conclusion, DAG supplementation did not reduce the fasting serum TAG concentration significantly compared with TAG, but some effects were suggested in diabetic patients with hypertriglyceridemia.  相似文献   

2.
We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF, a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (?32%). There was a significant inverse correlation between changes in urine 8-iso PGF and PL ARA on both CRD (r = ?0.82 CRD-SFA; r = ?0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA.  相似文献   

3.
Xu T  Li X  Ma X  Zhang Z  Zhang T  Li D 《Lipids》2009,44(2):161-168
Diacylglycerol (DAG) supplementation has been shown to be associated with the reduction of postprandial triacylglycerol (TAG) concentration, although the extent of the association is uncertain. We quantitatively examined the effect of dietary DAG on postprandial serum TAG concentration by conducting a meta-analysis of randomized controlled trials. Potential papers were initially searched for in the electronic databases of Medline, Embase and Cochrane library. Inclusion criteria required the trial to be randomized with DAG as the treatment group, and TAG as the control group. Information was extracted independently by two investigators and the effect of DAG on postprandial TAG concentration was examined in Review Manager 4.2. Seven papers were included in the statistic pooling. DAG supplementation reduced the increment of postprandial TAG concentration significantly at postprandial 2 h (Weighted mean difference (WMD) −0.07 mmol/L; 95% CI −0.13 to 0.00 mmol/L; P = 0.05), 4 h (WMD −0.15 mmol/L; 95% CI −0.24 to −0.06 mmol/L; P = 0.002) and 6 h (WMD −0.14 mmol/L; 95% CI −0.23 to −0.05 mmol/L; P = 0.002). Linear regression showed that the effect of DAG was positively correlated with the daily dosage at 2 h (P = 0.095) and 6 h (P = 0.053) after lipid loading. In conclusion, compared with TAG oil, DAG reduced the postprandial serum TAG concentration at 2 h, 4 h and 6 h postprandial and was positively correlated with daily dosage.  相似文献   

4.
High serum levels of triglycerides (Tg) and low levels of high-density lipoprotein cholesterol (HDL-C) are characteristic of the Metabolic Syndrome (MetS). We assessed the ratio of Tg to HDL-C as a way to identify MetS and insulin resistance. We also evaluated its association with severity of carotid atherosclerosis. Data were analyzed from three cohorts totaling 13,908 participants. MetS was defined according to the International Diabetes Federation criteria. Optimal cut-off for Tg/HDL-C ratio was obtained using Youden's index in receiver-operating characteristic (ROC) curve analyses. The risk of MetS and IR in those with a Tg/HDL-C ratio above the optimum cutoff was evaluated by logistic regression analysis. A Tg/HDL-C ratio above the optimal cutoff level significantly increased the odds ratio for MetS in the three cohorts (OR 6.00, 4.04, and 3.50, least in the healthy population), identified insulin resistance defined by the homeostatic model of insulin resistance (HOMA-IR) (p < 0.0001), and was strongly associated with atherosclerosis severity (p = 0.0001). Tg/HDL-C ratio identifies persons with MetS, insulin resistance, and severe atherosclerosis. It should be used more widely to identify patients at high risk. This is clinically important because insulin resistance is treatable.  相似文献   

5.
Male Sprague-Dawley rats were fed for one week diets containing 20% by weight fat/oil mixtures with different levels of erucic acid (22∶1n−9) (∼2.5 or 9%) and total saturated fatty acids (∼8 or 35%). Corn oil and high erucic acid rapeseed (HEAR) oil were fed as controls. The same hearts were evaluated histologically using oil red O staining and chemically for cardiac triacylglycerol (TAG) and 22∶1n−9 content in cardiac TAG to compare the three methods for assessing lipid accumulation in rat hearts. Rats fed corn oil showed trace myocardial lipidosis by staining, and a cardiac TAG content of 3.6 mg/g wet weight in the absence of dietary 22∶1n−9. An increase in dietary 22∶1n−9 resulted in significantly increased myocardial lipidosis as assessed histologically and by an accumulation of 22∶1n−9 in heart lipids; there was no increase in cardiac TAG except when HEAR oil was fed. An increase in saturated fatty acids showed no changes in myocardial lipid content assessed histologically, the content of cardiac TAG or the 22∶1n−9 content of TAG at either 2.5 or 9% dietary 22∶1n−9. The histological staining method was more significantly correlated to 22∶1n−9 in cardiac TAG (r=0.49;P<0.001) than to total cardiac TAG (r=0.40;P<0.05). The 22∶1n−9 content was highest in cardiac TAG and free fatty acids. Among the cardiac phospholipids, the highest incorporation was observed into phosphatidylserine, followed by sphingomyelin. With the addition of saturated fat, the fatty acid composition showed decreased accumulation of 22∶1n−9 and increased levels of arachidonic and docosahexaenoic acids in most cardiac phospholipids, despite decreased dietary concentrations of their precursor fatty acids, linoleic and linolenic acids.  相似文献   

6.
Chemical and enzymatic interesterification are used to create spreadable fats. However, a comparison between the two processes in terms of their acute metabolic effects has not yet been investigated. A randomised crossover study in obese (plasma TAG > 1.69 mmol/L, and BMI > 30 (BMI = kg/m2) or waist circumference > 102 cm, n = 11, age = 59.3 ± 1.8 years) and non-obese (plasma triacylglycerol (TAG) < 1.69 mmol/L, and BMI < 30  or waist circumference < 102 cm, n = 10, age = 55.8 ± 2.2 years) men was undertaken to compare the effects of chemical versus enzymatic interesterification on postprandial risk factors for type 2 diabetes (T2D) and cardiovascular disease (CVD). TAG, cholesterol, glucose, insulin and free fatty acid concentrations were measured for 6 h following consumption of 1 g fat/kg body mass of non-interesterified (NIE), chemically interesterified (CIE), enzymatically interesterified (EIE) stearic acid-rich fat spread or no fat, each with 50 g available carbohydrate from white bread. Interesterification did not affect postprandial glucose, insulin, free fatty acids or cholesterol (P > 0.05). Following ingestion of NIE, increases in serum oleic acid were observed, whereas both oleic and stearic acids were increased with CIE and EIE (P < 0.05). While postprandial TAG concentrations in non-obese subjects were not affected by fat treatment (P > 0.05), obese subjects had an 85% increase in TAGs with CIE versus NIE (P < 0.05). The differences in TAG response between non-obese and obese subjects suggest that interesterification may affect healthy individuals differently compared to those already at risk for T2D and/or CVD.  相似文献   

7.
Teng KT  Nagapan G  Cheng HM  Nesaretnam K 《Lipids》2011,46(4):381-388
Postprandial lipemia impairs insulin sensitivity and triggers the pro-inflammatory state which may lead to the progression of cardiovascular diseases. A randomized, crossover single-blind study (n = 10 healthy men) was designed to compare the effects of a high-fat load (50 g fat), rich in palmitic acid from both plant (palm olein) or animal source (lard) versus an oleic acid-rich fat (virgin olive oil) on lipemia, plasma glucose, insulin and adipocytokines. Serum triacylglycerol (TAG) concentrations were significantly lower after the lard meal than after the olive oil and palm olein meals (meal effect P = 0.003; time effect P < 0.001). The greater reduction in the plasma non-esterified free fatty acids levels in the lard group compared to the olive oil meal was mirrored by the changes observed for serum TAG levels (P < 0.05). The magnitude of response for plasma glucose, insulin and adipocytokines [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and leptin] were not altered by the type of dietary fats. A significant difference in plasma IL-1β was found over time following the three high fat loads (time effect P = 0.036). The physical characteristics and changes in TAG structure of lard may contribute to the smaller increase in postprandial lipemia compared with palm olein. A high fat load but not the type of fats influences concentrations of plasma IL-1β over time but had no effect on other pro-inflammatory markers tested in the postprandial state.  相似文献   

8.
High triacylglycerol (TAG) levels may predict vascular risk. The effect of a statin-induced reduction in TAG levels, irrespective of HDL-C increase, on clinical outcome has not yet been addressed by an endpoint study in patients with coronary heart disease (CHD). The GREACE study compared usual with structured care aimed at achieving LDL-C = 100 mg/dL (2.6 mmol/L) by dose titration with atorvastatin. All patients had CHD and were followed for 3 years. This post hoc analysis of GREACE examines the effect of statins on TAG levels and their relation with cardiovascular disease (CVD) events in all patients and in the subgroup of patients with metabolic syndrome (MetS). Baseline TAG levels >150 mg/dL (1.7 mmol/L) were predictive of subsequent CVD events [cardiac mortality, non-fatal myocardial infarction (MI), unstable angina (UA), revascularisation, congestive heart failure (CHF), and stroke] only in statin untreated patients. Stepwise regression analysis showed that with every 20% statin-related TAG reduction there was a decrease in CVD risk by 12% (HR 0.88, 95% CI 0.75–0.95, P = 0.007) in the structured care group vs. the usual care group, by 8% (HR 0.92, 95% CI 0.81–0.97, P = 0.02) in all statin treated patients vs. the untreated ones and by 15% (HR 0.85, 95% CI 0.65–0.94, P = 0.005) in those with MetS treated with a statin vs. those untreated. Using the same analysis but only taking into consideration vascular events (cardiac mortality, non-fatal MI, UA, revascularisation, and stroke) there was a 18% (HR = 0.82, 95% CI 0.57–0.96, P = 0.03) decrease in risk in the MetS (+) patients treated with a statin vs. those not on a statin, and a decrease in risk by 16% (HR = 0.84, 95% CI 0.53–1.07, P = 0.08), when only hard vascular endpoints (cardiac mortality, non-fatal MI, and stroke) were considered. TAG levels are predictive of subsequent CVD events in statin untreated CHD patients. Statin (mainly atorvastatin)-induced decrease in TAG levels was related to a significant reduction in subsequent CVD events. This benefit was more pronounced in CHD MetS (+) patients.  相似文献   

9.
It is widely reported that an association exists between dietary fat intake and the incidence of prostate cancer in humans. To study this association, there is a need for an animal model where prostate carcinogenesis occurs spontaneously. The canine prostate is considered a suitable experimental model for prostate cancer in humans since it is morphologically similar to the human prostate and both humans and dogs have a predisposition to benign and malignant prostate disease. In this study, the FA and lipids profiles of the normal canine prostate tissue from nine dogs were examined. The total lipid content of the canine prostate tissue was 1.7±0.5% (wet weight). The lipid composition analysis using TLC-FID showed that the two major lipid classes were phospholipids and TAG. Total FA, phospholipid, and TAG FA analysis showed that the major FA were palmitic acid (16∶0), stearic acid (18∶0), oleic acid (18∶1), linoleic acid (18∶2n−6), and arachidonic acid (20∶4n−6), The n−3 FA were present at <3% of total FA and included α-linolenic acid (18∶3n−3) (in total and TAG tissue FA), EPA (20∶5n−3) (not in TAG), and DHA (22∶6n−3) (not in TAG). The n−3/n−6 ratio was 1∶11, 1∶13, and 1∶8 in total, phospholipid, and TAG FA, respectively. This study shows the canine prostate has a low level of n−3 FA and a low n−3/n−6 ratio. This is perhaps due to low n−3 content of the diet of the dogs. FA analysis of dogfoods available in Australia showed that the n−3 content in both supermarket and premium bran dogfoods was <3% (wet weight), and the n−3/n−6 ratio was low.  相似文献   

10.
The effect of dietary TAG structure and fatty acid acyl TAG position on palmitic and linoleic acid metabolism was investigated in four middle-aged male subjects. The study design consisted of feeding diets containing 61 g/d of native lard (NL) or randomized lard (RL) for 28 d. Subjects then received an oral dose of either 1,3-tetradeuteriopalmitoyl-2-dideuteriolinoleoyl-rac-glycerol or a mixture of 1,3-dideuteriolinoleoyl-2-tetradeuteriopalmitoyl-rac-glycerol and 1,3-hexadeuteriopalmitoyl-2-tetradeuteriolinoleoyl-rac-glycerol. Methyl esters of plasma lipids isolated from blood samples drawn over a 2-d period were analyzed by GC-MS. Results showed that absorption of the 2H-fatty acids (2H-FA) was not influenced by TAG position. The 2H-FA at the 2-acyl TAG position were 85±4.6% retained after absorption. Substantial migration of 2H-16∶0 (31.2±8.6%) from the sn-2 TAG position to the sn-1,3 position and 2H-18∶2n−6 (52.8±6.4%) from the sn-1,3 position to the sn-2 position of chylomicron TAG occurred after initial absorption and indicates the presence of a previously unrecognized isomerization mechanism. Incorporation and turnover of the 2H-FA in chylomicron TAG, plasma TAG, and plasma cholesterol esters were not influenced by TAG acyl position. Accretion of 2H-16∶0 from the sn-2 TAG position in 1-acylphosphatidylcholine was 1.7 times higher than 2H-16∶0 from the sn-1,3 TAG positions. Acyl TAG position did not influence 2H-18∶2n−6 incorporation in PC. The concentration of 2H-18∶2n−6-derived 2H-20∶4n−6 in plasma PC from subjects fed, the RL diet was 1.5 times higher than for subjects fed the NL diet, and this result suggests that diets containing 16∶0 located at the sn-2 TAG position may inhibit 20∶4n−6 synthesis. The overall conclusion is that selective rearrangement of chylomicron TAG structures diminishes but does not totally eliminate the metabolic and physiological effects of dietary TAG structure.  相似文献   

11.
Frémont L  Gozzelino MT  Linard A 《Lipids》2000,35(9):991-999
This experiment was designed to evaluate the effects of dietary red wine phenolic compounds (WP) and cholesterol on lipid oxidation and transport in rats. For 5 wk, weanling rats were fed polyunsaturated fat diets (n−6/n−3=6.4) supplemented or not supplemented with either 3 g/kg diet of cholesterol, 5 g/kg diet of WP, or both. The concentrations of triacylglycerols (TAG, P<0.01) and cholesterol (P<0.0002) were reduced in fasting plasma of rats fed cholesterol despite the cholesterol enrichment of very low density lipoprotein + low density lipoprotein (VLDL+LDL). The response was due to the much lower plasma concentration of high density lipoprotein (HDL) (−35%, P<0.0001). In contrast, TAG and cholesteryl ester (CE) accumulated in liver (+120 and +450%, respectively, P<0.0001). However, the cholesterol content of liver microsomes was not affected. Dietary cholesterol altered the distribution of fatty acids mainly by reducing the ratio of arachidonic acid to linoleic acid (P<0.0001) in plasma VLDL+LDL (−35%) and HDL (−42%) and in liver TAG (−42%), CE (−78%), and phospholipids (−28%). Dietary WP had little or no effect on these variables. On the other hand, dietary cholesterol lowered the α-tocopherol concentration in VLDL+LDL (−40%, P<0.003) and in microsomes (−60%, P<0.0001). In contrast, dietary WP increased the concentration in microsomes (+21%, P<0.0001), but had no effect on the concentration in VLDL+LDL. Cholesterol feeding decreased (P<0.006) whereas WP feeding increased (P<0.0001) the resistance of VLDL+LDL to copper-induced oxidation. The production of conjugated dienes after 25 h of oxidation ranged between 650 (WP without cholesterol) and 2,560 (cholesterol without WP) μmol/g VLDL+LDL protein. These findings show that dietary WP were absorbed at sufficient levels to contribute to the protection of polyunsaturated fatty acids in plasma and membranes. They could also reduce the consumption of α-tocopherol and endogenous antioxidants. The responses suggest that, in humans, these substances may be beneficial by reducing the deleterious effects of a dietary overload of cholesterol.  相似文献   

12.
Ishihara K  Komatsu W  Saito H  Shinohara K 《Lipids》2002,37(5):481-486
The effects of dietary stearidonic acid (18∶4n−3) on inflammatory mediator release in whole blood and splenocytes was investigated in Balb/c mice, and the effects were compared with those of two other n−3 PUFA: α-linolenic acid (18∶3n−3) and EPA (20∶5n−3). TAG mixtures containing 10% of 18∶4n−3, 18∶3n−3, or 20∶5n−3 as the respective sole n−3 PUFA were enzymatically synthesized. Diets containing synthesized TAG mixtures were fed to Balb/c mice for 3 wk. The release of prostaglandin E2 (PGE2) and tumor necrosis factor (TNF) were measured in whole blood and splenocytes stimulated with lipopolysaccharide. In whole blood, the production of INF was suppressed by all dietary n−3 PUFA (18∶3n−3, 18∶4n−3, and 20∶5n−3) as compared with the control diet, which contained TAG prepared from safflower oil. PGE2 production was not significantly changed. Differences among the n−3 PUFA (18∶3n−3), 18∶4n−3, and 20∶5n−3) were not observed. In splenocytes, PGE2 production was suppressed by dietary n−3 PUFA, but TNF production was not. GC analysis of plasma and splenocyte FA profiles showed an increase in the levels of 20∶4n−3, 20∶5n−3, and 22∶6n−3 in mice fed the diet containing 18∶4n−3.  相似文献   

13.
Patients with metabolic syndrome (MetS) usually have low high density lipoprotein cholesterol (HDL-C) levels. We determined the HDL distribution profile as well as the HDL-related lipoprotein associated phospholipase A2 (HDL-LpPLA2) and paraoxonase-1 (PON1) activities in subjects with MetS (n = 189) but otherwise healthy. Age and sex-matched individuals (n = 166) without MetS served as controls. The lower HDL-C concentration in MetS patients was due to a reduction in both large and small HDL subclasses (P < 0.001 and P < 0.05, respectively). As the number of MetS components increased, the HDL phenotype comprised of a greater percentage of small HDL-3 and less large HDL-2 subclasses, resulting in a decreased HDL-2/HDL-3 ratio (P < 0.001 for all trends). Multivariate analysis revealed that HDL-2 levels and the HDL-2/HDL-3 ratio significantly and independently correlated with HDL-C (positively) and TG (negatively) levels. HDL-3 concentration significantly and independently positively correlated with HDL-C and TG levels. HDL-LpPLA2 activity was decreased in MetS patients (P < 0.01), a phenomenon that may contribute to the defective antiatherogenic activity of HDL in MetS. PON1 activity did not differ between groups. We conclude that MetS, in addition to the decrease in HDL-C concentration, is associated with alterations in the HDL phenotype, which is comprised of a greater percentage of small HDL subclasses. Furthermore, HDL-LpPLA2 activity is decreased in MetS patients.  相似文献   

14.
We have studied the effects of dietary FA on the accumulation and secretion of [3H]glycerolipids by salmon hepatocytes in culture. Atlantic salmon were fed diets supplemented with either 100% soybean oil (SO) or 100% fish oil (FO), and grew from an initial weight of 113±5 g to a final weight of 338 ±19 g. Hepatocytes were isolated from both dietary groups and incubated with [3H]glycerol in an FA-free medium; a medium supplemented with 0.75 mM of one of three FA—18∶1n−9, 20∶5n−3, or 22∶6n−3—or a medium supplemented with 0.75 mM of the sulfur-substituted FA analog tetradecylthioacetic acid (TTA), which cannot undergo β-oxidation. Incubations were allowed to proceed for 1,2,6, or 24 h. The rate of the secretion of radioactive glycerolipids with no FA added was 36% lower from hepatocytes isolated from fish fed the FO diet than it was from hepatocytes isolated from fish fed the SO diet. Hepatocytes incubated with 18∶1n−9 secreted more [3H]TAG than when incubated with no FA, whereas hepatocytes incubated with 20∶5n−3 or TTA secreted less labeled TAG than when incubated with no FA. This observation was independent of the feeding group. Hepatocytes incubated with 22∶6n−3 secreted the highest amounts of total [3H]glycerolipids compared with the other treatments, owing to increased secretion of phospholipids and mono- and diacylglycerols (MDG). In contrast, the same amounts of [3H]TAG were secreted from these cells as from cells incubated in an FA-free medium. The lipid-lowering effect of FO is thus independent of 22∶6n−3, showing that 20∶5n−3 is the FA that is responsible for the lipid-lowering effect. The ratio of TAG to MDG in lipids secreted from hepatocytes to which 20∶5n−3 or TTA had been added was lower than that in lipids secreted from hepatocytes incubated with 18∶1n−9 or 22∶6n−3, suggesting that the last step in TAG synthesis was inhibited. Morphometric measurements revealed that hepatocytes incubated with 20∶5n−3 accumulated significantly more cellular lipid than cells treated with 18∶1n−9, 22∶6n−3, TTA, or no treatment. The area occupied by mitochondria was also greater in these cells. The present study shows that dietary FO reduces TAG secretion from salmon hepatocytes and that 20∶5n−3 mediates this effect.  相似文献   

15.
Using lipidomic methodologies the impact that meal lipid composition and metabolic syndrome (MetS) exerts on the postprandial chylomicron triacylglycerol (TAG) response was examined. Males (9 control; 11 MetS) participated in a randomised crossover trial ingesting two high fat breakfast meals composed of either dairy-based foods or vegetable oil-based foods. The postprandial lipidomic molecular composition of the TAG in the chylomicron-rich (CM) fraction was analysed with tandem mass spectrometry coupled with liquid chromatography to profile CM TAG species and targeted TAG regioisomers. Postprandial CM TAG concentrations were significantly lower after the dairy-based foods compared with the vegetable oil-based foods for both control and MetS subjects. The CM TAG response to the ingested meals involved both significant and differential depletion of TAG species containing shorter- and medium-chain fatty acids (FA) and enrichment of TAG molecular species containing C16 and C18 saturated, monounsaturated and diunsaturated FA. Furthermore, there were significant changes in the TAG species between the food TAG and CM TAG and between the 3- and 5-h postprandial samples for the CM TAG regioisomers. Unexpectedly, the postprandial CM TAG concentration and CM TAG lipidomic responses did not differ between the control and MetS subjects. Lipidomic analysing of CM TAG molecular species revealed dynamic changes in the molecular species of CM TAG during the postprandial phase suggesting either preferential CM TAG species formation and/or clearance.  相似文献   

16.
This study was undertaken to determine whether the neonate was more susceptible to the effects of dietary erucic acid (22∶1n−9) than the adult. Newborn piglets were used to assess the safety of different levels of 22∶1n−9 on lipid and histological changes in the heart. Newborn piglets showed no myocardial lipidosis as assessed by oil red 0 staining, but lipidosis appeared with consumption of sow milk and disappeared by seven days of age. Milk replacer diets containing soybean oil, or rapeseed oil mixtures with up to 5% 22∶1n−9 in the oil, or 1.25% in the diet, gave trace myocardial lipidosis. Rapeseed oil mixtures with 7 to 42.9% 22∶1n−9 showed definite myocardial lipidosis in newborn piglets, which correlated to dietary 22∶1n−9, showing a maximum after one week on diet. The severity of the lipidosis was greater than observed previously with weaned pigs. There were no significant differences among diets in cardiac lipid classes except for triacylglycerol (TAG), which increased in piglets fed a repeseed oil with 42.9% 22∶1n−9. TAG showed the highest incorporation of 22∶1n−9, the concentration of 22∶1n−9 in TAG was similar to that present in the dietary oil. Among the cardiac phospholipids, sphingomyelin and phosphatidylserine had the highest, and diphosphatidylglycerol (DPG) the lowest level of 22∶1n−9. The low content of 22∶1n−9 in DPG of newborn piglets is not observed in weaned pigs and rats fed high erucic acid rapeseed oil. The relative concentration of saturated fatty acids was lowered in all cardiac phospholipids of piglets fed rapeseed oils, possibly due to the low content of saturated fatty acids in rapeseed oils. The results suggest that piglets fed up to 750 mg 22∶1n−9/kg body weight/day showed no adverse nutritional or cardiac effects.  相似文献   

17.
We recently demonstrated that daily whole egg consumption during moderate carbohydrate restriction leads to greater increases in plasma HDL-cholesterol (HDL-C) and improvements in HDL profiles in metabolic syndrome (MetS) when compared to intake of a yolk-free egg substitute. We further investigated the effects of this intervention on HDL composition and function, hypothesizing that the phospholipid species present in egg yolk modulate HDL lipid composition to increase the cholesterol-accepting capacity of subject serum. Men and women classified with MetS were randomly assigned to consume either three whole eggs (EGG, n = 20) per day or the equivalent amount of egg substitute (SUB, n = 17) throughout a 12-week moderate carbohydrate-restricted (25–30 % of energy) diet. Relative to other HDL lipids, HDL-cholesteryl ester content increased in all subjects, with greater increases in the SUB group. Further, HDL-triacylglycerol content was reduced in EGG group subjects with normal baseline plasma HDL-C, resulting in increases in HDL-CE/TAG ratios in both groups. Phospholipid analysis by mass spectrometry revealed that HDL became enriched in phosphatidylethanolamine in the EGG group, and that EGG group HDL better reflected sphingomyelin species present in the whole egg product at week 12 compared to baseline. Further, macrophage cholesterol efflux to EGG subject serum increased from baseline to week 12, whereas no changes were observed in the SUB group. Together, these findings suggest that daily egg consumption promotes favorable shifts in HDL lipid composition and function beyond increasing plasma HDL-C in MetS.  相似文献   

18.
Murphy MG  Wright V  Scott J  Timmins A  Ackman RG 《Lipids》1999,34(2):115-124
This investigation was carried out to characterize the effects of specific dietary marine oils on tissue and plasma fatty acids and their capacity to generate metabolites (prostanoids, lipid peroxides). Young male guinea pigs were fed nonpurified diet (NP), or NP supplemented (10%, w/w) with menhaden fish oil (MO), harp seal oil (SLO), or corn oil (CO, control diet) for 23 to 28 d. Only the plasma showed significant n−3 polyunsaturated fatty acid (PUFA)-induced reductions in triacylglycerol (TAG) or total cholesterol concentration. Proportions of total n−3 PUFA in organs and plasma were elevated significantly in both MO and SLO dietary groups (relative to CO), and in all TAG fractions levels were significantly higher in MO-than SLO-fed animals. The two marine oil groups differed in their patterns of incorporation of eicosapentaenoic acid (EPA). In guinea pigs fed MO, the highest levels of EPA were in the plasma TAG, whereas in SLO-fed animals, maximal incorporation of EPA was in the heart polar lipids (PL). In both marine oil groups, the greatest increases in both docosahexaenoic acid (22∶6n−3, DHA) and docosapentaenoic acid (22∶5n−3, DPA) relative to the CO group, were in plasma TAG, although the highest proportions of DHA and DPA were in liver PL and heart TAG, respectively. In comparing the MO and SLO groups, the greatest difference in levels of DHA was in heart TAG (MO>SLO, P<0.005), and in levels of DPA was in heart PL (SLO>MO, P<0.0001). The only significant reduction in proportions of the major n−6 PUFA, arachidonic acid (AA), was in the heart PL of the SLO group (SLO>MO=CO, P<0.005). Marine oil feeding altered ex vivo generation of several prostanoid metabolites of AA, significantly decreasing thromboxane A2 synthesis in homogenates of hearts and livers of guinea pigs fed MO and SLO, respectively (P<0.04 for both, relative to CO). Lipid peroxides were elevated to similar levels in MO- and SLO-fed animals in plasma, liver, and adipose tissue, but not in heart preparations. This study has shown that guinea pigs respond to dietary marine oils with increased organ and plasma n−3 PUFA, and changes in potential synthesis of metabolites. They also appear to respond to n−3 PUFA-enriched diets in a manner that is different from that of rats.  相似文献   

19.
Indian diets comprising staples such as cereals, millets, and pulses provide 4.8 energy % from linoleic acid (18∶2n−6) but fail to deliver adequate amounts of n−3 FA. Consumption of long-chain n−3 PUFA such as EPA (20∶5n−3) and DHA (22∶6n−3) is restricted to those who consume fish. The majority of the Indian population, however, are vegetarians needing additional dietary sources of n−3 PUFA. The present work was designed to use n−3 FA-enriched spray-dired milk powder to provide n−3 FA. Whole milk was supplemented with linseed oil to provide α-linolenic acid (LNA, 18∶3n−3), with fish oil to provide EPA and DHA, or with groundnut oil (GNO), which is devoid of n−3 PUFA, and then spray-dired. Male Wistar rats were fed the spray-dired milk formulations for 60 d. The rats given formulations containing n−3 FA showed significant increases (P<0.001) in the levels of LNA or EPA/DHA in the serum and in tissue as compared with those fed the GNO control formulation. Rats fed formulations containing n−3 FA had 30–35% lower levels of serum total cholesterol and 25–30% lower levels of serum TAG than control animals. Total cholesterol and TAG in the livers of rats fed the formulations containing n−3 FA were lower by 18–30% and 11–18%, respectively, compared with control animals. This study showed that spray-dried milk formulations supplemented with n−3 FA are an effective means of improving dietary n−3 FA intake, which may decrease the risk factors associated with cardiovascular disease.  相似文献   

20.
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated “omics” approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the “lysophosphatidylcholines to phosphatidylcholines” and “cholesteryl ester to free cholesterol” ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated “omics” approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号