共查询到10条相似文献,搜索用时 62 毫秒
1.
针对图像显著区域检测区域轮廓不明确,抗噪能力弱的问题,提出一种基于分块对比的多尺度图像显著区域检测。该方法以Itti模型为基础,在多尺度下提取图像特征以更全面地表现图像的总体特征;以图像块为单位计算图像的局部对比度作为图像的显著值;用自适应阈值法从显著图中提取显著区域。仿真实验结果表明,该方法能够准确地提取图像的显著性区域,使区域具有明确的边界。 相似文献
2.
针对现有算法对复杂背景的图像检测效果较差的问题,提出融合区域对比度和背景先验的显著目标检测算法。首先利用超像素分割将图像分割成感知均匀的图像块,然后根据区域对比度计算全局对比度特征和空间聚集度特征,再根据背景先验得到背景集,计算图像块与背景集间的相似性特征,接着对三个特征显著图进行融合计算,最后根据每个像素与周围超像素的颜色和距离对比度得到每个像素的显著值。实验结果表明,所提算法能较均匀高亮整个目标且有效抑制无关背景信息。 相似文献
3.
目的 遥感图像上任意方向舰船目标的检测,是给出舰船在图像上的最小外切矩形边界框。基于双阶段深度网络的任意方向舰船检测算法速度较慢;基于单阶段深度网络的任意方向舰船检测算法速度较快,但由于舰船具有较大长宽比的形态特点,导致虚警率较高。为了降低单阶段目标检测的虚警率,进一步提升检测速度,针对舰船目标的形态特点,提出了基于密集子区域切割的快速检测算法。方法 沿长轴方向,将舰船整体密集切割为若干个包含在正方形标注框内的局部子区域,确保标注框内最佳的子区域面积有效占比,保证核心检测网络的泛化能力;以子区域为检测目标,训练核心网络,在训练过程对重叠子区域进行整合;基于子图分割将检测得到的子区域进行合并,进而估计方向角度等关键舰船目标参数。其中采用子区域合并后处理替代了非极大值抑制后处理,保证了检测速度。结果 在HRSC2016(high resolution ship collections)实测数据集上,与最新的改进YOLOv3(you only look once)、RRCNN (rotated region convolutional neural network)、RRPN (rotation region proposal networks)、R-DFPN-3(rotation dense feature pyramid network)和R-DFPN-4等5种算法进行了比较,相较于检测精度最高的R-DFPN-4对照算法,本文算法的mAP (mean average precision)(IOU (inter section over union)=0.5)值提高了1.9%,平均耗时降低了57.9%;相较于检测速度最快的改进YOLOv3对照算法,本文算法的mAP (IOU=0.5)值提高了3.6%,平均耗时降低了31.4%。结论 本文所提出的任意方向舰船检测算法,结合了舰船目标的形态特点,在检测精度与检测速度均优于当前主流任意方向舰船检测算法,检测速度有明显提升。 相似文献
4.
基于运动区域的多目标检测 总被引:2,自引:2,他引:2
运动目标的检测在天文观测、气象分析、安全监视、交通管制等许多领域有着广泛的应用,它是机器视觉研究的重要课题。本文提出了基于运动区域的多目标检测方法,有效地解决了同一运动目标在序列图像中“远小近大”的问题,运用运动区域正确地检测出运动目标在序列图像中的位置。 相似文献
5.
针对目前基于深度学习的显著目标检测算法存在的目标完整性和区域平滑度的不足,基于非局部深度特征提出一种多尺度上下文信息增强的全卷积网络算法,包含多级别特征提取、多尺度上下文特征增强、对比度特征提取和局部-全局信息融合预测4个模块.首先从VGG16模型提取多级别局部特征,利用多尺度上下文实现特征信息增强;然后设计组合的损失函数进行网络训练以学习对比度特征;最后用局部-全局融合的方式实现显著图的预测.与已有算法在ECSSD,HKU-IS和DUT-OMRON数据集上进行实验的结果表明,该算法在复杂场景图像上的鲁棒性更好,对背景噪声具有更有效的抑制作用,得到的显著目标区域更加连续和完整. 相似文献
6.
目的 为了解决利用显著区域进行图像压缩已有方法中存在的对多目标的图像内容不能有效感知,从而影响重建图像的质量问题,提出一种基于多尺度深度特征显著区域检测图像压缩方法。方法 利用改进的卷积神经网络(CNNs),进行多尺度图像深度特征检测,得到不同尺度显著区域;然后根据输入图像尺寸自适应调整显著区域图的尺寸,同时引入高斯函数,对显著区域进行滤波,得到多尺度融合显著区域;最后结合编码压缩技术,对显著区域实行近无损压缩,非显著区域利用有损编码技术进行有损压缩,完成图像的压缩和重建工作。结果 提出的图像压缩方法较JPEG压缩方法,编码码率为0.39 bit/像素左右时,在数据集Kodak PhotoCD上,峰值信噪比(PSNR)提高了2.23 dB,结构相似性(SSIM)提高了0.024;在数据集Pascal Voc上,PSNR和SSIM两个指标分别提高了1.63 dB和0.039。同时,将提出的多尺度特征显著区域方法结合多级树集合分裂(SPIHT)和游程编码(RLE)压缩技术,在Kodak数据集上,PSNR分别提高了1.85 dB、1.98 dB,SSIM分别提高了0.006、0.023。结论 提出的利用多尺度深度特征进行图像压缩方法得到了较传统编码技术更好的结果,该方法通过有效地进行图像内容的感知,使得在图像压缩过程中,减少了图像内容损失,从而提高了压缩后重建图像的质量。 相似文献
7.
多摄像机之间基于区域SIFT描述子的目标匹配 总被引:2,自引:0,他引:2
提出了一种多摄像机之间的目标匹配方法,摄像机可以带有云台.该方法是基于区域的方法,但是区域的特征以SIFT描述子而不是通常的颜色来描述,同时目标的检测使用减背景技术,目标跟踪则选用粒子滤波.该文的匹配方法不需要摄像机之间的合作,也不要求目标物体处于同一地平面.文中方法的主要特点还表现在:(1)无几何约束的需求,同一目标物体的背景完全切换后,也可以进行匹配;(2)可以匹配各种类型的目标物体;(3)摄像机在目标跟踪期间可以简单运动(通过云台);(4)适合分布式计算,但也可以集中式处理;(5)容忍亮度的变化.实验结果证明作者的方法是有效的. 相似文献
8.
目的 针对基于对比度的显著检测方法,因忽略了特征的空间分布而导致准确性不高的问题,启发于边界先验关于图像空间布局的思想,提出构图先验的显著检测方法。方法 假定目标分布于三分构图线周围,根据相关性比较计算显著值。首先,对图像进行多尺度超像素分割并构造闭环图;其次,提取构图线区域超像素特征并使用Manifold Ranking算法计算显著目标与背景的分布;然后,从目标和背景两个角度对显著值进行细化并利用像素区别性对像素点的显著值进行矫正;最后,融合多尺度显著值得到最终显著图。结果 在公开的MSRA-1000、CSSD、ECSSD数据集上验证本文方法并与其他算法进行对比。本文方法在各数据集上准确率最高,分别为92.6%,89.2%,76.6%。且处理单幅图像平均时间为0.692 s,和其他算法相比也有一定优势。结论 人眼视觉倾向于在构图线周围寻找显著目标,构图先验是根据人眼注意机制研究显著性,具有合理性,且构图先验的方法提高了显著目标检测的准确性。 相似文献
9.
10.
针对显著目标不相似时目标的显著值不一致问题,提出区域弱相关自表示的显著目标检测方法.首先在低秩矩阵恢复理论基础上为显著目标引入拉普拉斯正则项,以增大显著目标与背景的差异;然后最小化显著目标自表示系数的F-范数,使检测出的显著目标一致高亮;最后用可调节反正切函数对背景施加强的低秩约束,使背景与显著目标最大程度分离.在公开的显著目标检测数据集上与不同的显著目标检测方法进行对比实验,结果表明,该方法能得到更完整的显著目标和更一致的显著图. 相似文献