首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对传统的灰狼算法(GWO)易陷入局部最优、后期收敛速度慢等问题,提出一种非线性控制参数组合调整策略.对3种不同的非线性参数控制策略的调节因子a进行仿真,并分析影响搜索参数A的因素;对5组不同的调节参数值进行基准函数的测试仿真,选择权重系数的非线性控制参数组合策略的最佳参数值.仿真结果表明,所提出的非线性控制参数组合调...  相似文献   

2.
针对不相关并行机调度问题,面向降低能源消耗和减少完工时间的目标,提出一种更高效的基于十进制整数编码的多目标灰狼算法.求解时,采用将资源配置与作业排序相结合的十进制整数编码方式,设计了针对多目标离散调度问题的两阶段位置更新机制.同时引入了N S GA-Ⅱ的精英保留策略,提高了算法的寻优能力,应用最大迭代次数停止准则结束循环并保留最优解.最后,通过数值实验与有代表性的前沿算法进行仿真对比,以验证所提算法的可行性与有效性.  相似文献   

3.
4.
该文提出了NSGA-II算法的一种改进算法—INSGA。在引入算术交叉算子的同时,提出并引入累积排序适应度赋值策略。实验表明,INSGA具有更高的收敛速度和更好的种群多样性。  相似文献   

5.
针对带时间窗的多目标车辆路径规划问题,建立了最小化总成本和均衡度的多目标车辆路径优化模型,并提出了一种混合多目标灰狼算法进行求解。主要设计3点策略:(1)设计新的编码解码方式实现连续灰狼位置向量向离散客户序列的转化。(2)采用收敛性指标和分布性指标来进行决策个体的选择。(3)设计了多种删除、插入算子实施局部路径优化。为说明算法的有效性,以Solomon中的部分算例为例,将该算法与MOIGA和改进的ACO算法进行实验对比。实验结果表明,所提出的混合多目标灰狼算法能找到更好的Pareto解,并且性能优于其他进化算法。  相似文献   

6.
配电系统静止同步补偿器(Distribution Static Compensator, DSTATCOM)接入配电网能够有效解决高渗透率的光伏与时变负荷对主动配电网带来的影响.对含DSTATCOM与并联电容器组(capacitor banks, CB)的配电网进行协调无功优化能够有效解决分布式光伏以及时序负荷对系统电能质量的影响.本文以有功网损、电压偏差以及补偿容量最小为目标函数,建立了DSTATCOM与CB的配电网协调无功优化模型.针对原始灰狼算法(gray wolf optimization, GWO)中不足,提出多目标差分灰狼算法(multi-objective differential evolution gray wolf optimization,MODEGWO).最后以IEEE 33节点系统为例,引入某地区典型日光伏与负荷的时序波动功率,对含DSTATCOM与并联电容器组进行协调无功优化,得到动态运行策略.仿真结果验证了所提模型与算法的正确性与有效性.  相似文献   

7.
孙新宇 《软件工程》2022,(11):15-18+14
柔性作业车间调度问题(Flexible Jobshop Scheduling Problem,FJSP)是经典的NP-hard(Nondeterministic Polynomial-time hard)问题,针对该复杂问题,需要建立一个多目标的数学模型,采用灰狼优化算法对柔性作业车间的加工完成时间、总耗能和总机器负荷这三个目标进行优化,以加工完成时间、总耗能和总机器负荷作为研究目标。灰狼优化算法(GWO)是一种具有较高的寻优精度和收敛速度的算法,在此基础上对灰狼优化算法的初始化种群进行改进,为了使灰狼算法适用于多目标问题,与非支配排序遗传算法结合,引入非支配排序与拥挤度的概念,用于灰狼算法对种群的更新。对柔性作业车间调度算例进行测试,结果表明改进的灰狼算法针对多目标柔性作业车间调度可以找到最优解,以较少的迭代次数找到最小加工时间、最小总耗能及最小总机器负荷,对车间调度问题进行了优化。  相似文献   

8.
基于生态策略的动态多目标优化算法   总被引:1,自引:0,他引:1  
动态多目标优化问题(dynamic multi-objective optimization problems, DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问题特点,提出了一种基于生态策略的动态多目标优化算法(dynamic multi-objective optimization algorithm based on ecological strategy, ESDMO).各种群可以采取不同的进化策略应对外部环境变化,捕食种群与被捕食群体间的竞争也促进种群不断提高生存力.受此启发,采用了一种多种群协同进化机制与强化学习策略相结合的协同进化计算模型.该算法定义了一种环境自检算子用于检测环境的变化,不同的种群采取不同的生态策略来应对动态环境变化.经过各种类型的动态多目标优化问题测试,实验结果表明所提出的算法具有更好的解集多样性、均匀性和分布性,验证了该算法对于解决动态多目标优化问题是有效的.  相似文献   

9.
10.
龙文  伍铁斌 《控制与决策》2017,32(10):1749-1757
提出一种协调探索和开发能力的灰狼优化算法.利用佳点集方法初始化灰狼个体的位置,为全局搜索多样性奠定基础;为协调算法的全局探索和局部开发能力,给出一种基于正切三角函数描述的非线性动态变化控制参数;为加快算法的收敛速度,受粒子群优化算法个体记忆功能的启发,设计一种新的个体位置更新公式.10个标准函数的测试结果表明,改进灰狼优化(IGWO)算法能够有效地协调其对问题搜索空间的探索和开发能力.  相似文献   

11.
陈闯  Ryad Chellali  邢尹 《计算机应用》2017,37(12):3493-3497
针对基本灰狼优化(GWO)算法存在易陷入局部最优,进而导致搜索精度偏低的问题,提出了一种改进的GWO (IGWO)算法。一方面,通过引入由GWO算法系数向量构成的权值因子,动态调整算法的位置向量更新方程;另一方面,通过采用概率扰动策略,增强算法迭代后期的种群多样性,从而提升算法跳出局部最优的能力。对多个基准测试函数进行仿真实验,实验结果表明,相对于GWO算法、混合GWO (HGWO)算法、引力搜索算法(GSA)和差分进化(DE)算法,所提IGWO算法有效摆脱了局部收敛,在搜索精度、算法稳定性以及收敛速度上具有明显优势。  相似文献   

12.
针对大规模Web服务环境中难以获得整体性能高的组合服务的问题,提出了一种大规模Web服务组合方法。首先,采用文档对象模型(DOM)对XML格式的用户需求描述文档进行解析,以生成抽象Web服务组合序列;然后,采用服务主题模型进行服务筛选,并为每个抽象Web服务选取Top-k个具体Web服务从而缩减组合空间;接着,为提高服务组合质量和组合效率,提出了一种基于Logistic混沌映射和非线性收敛因子的优化的灰狼算法(OGWO/LN)来进行最优服务组合方案选择;该算法采用混沌映射来生成初始种群以增加服务组合方案的多样性,并避免了多次局部寻优;同时,提出一种非线性收敛因子来调节算法的搜索能力以提高算法的寻优性能;最后,采用MapReduce框架对OGWO/LN进行了并行实现。在真实数据集上的实验结果表明,所提算法与IFOA4WSC、MR-IDPSO、MR-GA等算法相比,平均适应度值分别提高了8.69%、7.94%和12.25%,在解决大规模Web服务组合问题时具有更好的寻优性能和稳定性。  相似文献   

13.
针对单一机制的灰狼优化算法(GWO)易陷于局部最优、收敛速度慢的问题,提出了一种改进灰狼优化(IGWO)算法来解决实际铁路物流配送中心选址的问题。首先,在基本的灰狼优化算法的基础上,引入佳点集理论初始化种群,从而提高了初始种群的多样性;然后,利用差值剔除策略(DES)来增加全局寻优能力,以达到一种高效的寻优模式。仿真实验结果表明:与标准的灰狼算法相比,所提出的IGWO适应度值提高了3%,在10个测试函数中最优值精度可最多提高7个单位;与粒子群优化(PSO)算法、差分进化(DE)算法和遗传算法(GA)比较,所提算法的运行速度分别提高了39.6%、46.5%和65.9%,选址速度也明显提高。可见所提算法可用于铁路物流中心的选址。  相似文献   

14.
李宁  李刚  邓中亮 《计算机应用》2017,37(4):1202-1206
针对现有的固定端传感器土壤墒情监测预测系统架设成本高、传感器易损坏、预测精度较低等问题,设计并实现了基于非固定无线传感器组网与改进灰狼算法优化神经网络的土壤墒情监测预测系统。系统使用非固定即插即用式传感器蓝牙组网收集墒情数据,使用高精度多源定位接入融合方法进行广域室外高精度定位。在算法方面,针对灰狼算法在迭代中后期易陷入局部最优等问题,提出一种基于末尾探索者策略的改进灰狼算法。首先,根据种群个体适应度值排名,在原有算法个体类型中增加探索者类型。然后,将种群搜索分为三个时期:活跃探索期、周期探索期和种群回归期。最后,在每个时期使用特有的位置更新策略进行探索者位置调整,使得算法在探索初期更具随机性,在探索中后期依然保持一定的解空间搜索能力,从而增强算法的局部最优回避能力。使用标准函数进行算法性能测试,并将该算法应用于优化土壤墒情神经网络预测模型问题,使用某市2号试验田的数据进行实验。实验结果表明,所提算法与直接神经网络预测模型相比,相对误差下降约4个百分点;与传统灰狼算法、粒子群优化(PSO)算法优化模型比较,相对误差下降约1至2个百分点。所提算法拥有更小的误差,更好的局部最优回避能力,能有效提高墒情的预测质量。  相似文献   

15.
云计算资源负载短期预测是云计算平台实现资源高效管理和系统安全、稳定运行的重要前提和保障措施之一。为了其提高负载短期预测的预测精度,提出一种改进灰狼搜索算法优化支持向量机的短期云计算资源负载预测模型(EGWO-SVM)。首先介绍灰狼搜索算法(GWO)的基本原理;然后提出基于极值优化的改进GWO模型;最后根据最优参数建立短期资源负载预测模型,并通过仿真实验对EGWO-SVM的性能进行测试。实验结果表明,相对于参比模型,EGWO-SVM能更加准确地刻画云计算短期资源负载的复杂变化趋势,从而有效提升云计算资源负载短期预测的精度。  相似文献   

16.
求解多目标优化问题的自适应粒子群算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于自适应惯性权重的多目标粒子群优化算法AWMOPSO,采用新的适应值分配机制,在搜索过程中根据粒子的适应值对粒子进行分类,动态调整粒子的惯性权重以控制粒子的开发和探索能力。用外部精英集保存非支配解,并通过拥挤距离维持解的多样性。引入精英迁移和局部扰动策略,提高收敛的速度和精度。典型的测试函数的计算结果表明了算法能够快速逼近Pareto最优前沿,是求解多目标优化问题的有效方法。  相似文献   

17.
语音情感识别日益受到人们的关注,在社会生活中发挥着重要作用。为了提高语音情感的识别率,提出一种改进的灰狼算法(Grey Wolf Optimizer,GWO)优化支持向量机(Support Vector Machine,SVM)的分类模型(IGWO-SVM)。介绍了灰狼算法的基本理论;嵌入选择算子和引入非线性收敛因子来提升IGWO的寻优性能;采用IGWO优化SVM参数,进而建立语音情感的分类模型。通过10个基准测试函数的仿真实验,验证了IGWO性能优于GWO。对于参比模型,IGWO-SVM模型能够有效提高语音情感的识别率。  相似文献   

18.
求解约束优化问题的改进灰狼优化算法   总被引:3,自引:0,他引:3  
龙文  赵东泉  徐松金 《计算机应用》2015,35(9):2590-2595
针对基本灰狼优化(GWO)算法存在求解精度低、收敛速度慢、局部搜索能力差的问题,提出一种改进灰狼优化(IGWO)算法用于求解约束优化问题。该算法采用非固定多段映射罚函数法处理约束条件,将原约束优化问题转化为无约束优化问题,然后利用IGWO算法对转换后的无约束优化问题进行求解。在IGWO算法中,引入佳点集理论生成初始种群,为算法全局搜索奠定基础;为了提高局部搜索能力和加快收敛,对当前最优灰狼个体执行Powell局部搜索。采用几个标准约束优化测试问题进行仿真实验,结果表明该算法不仅克服了基本GWO的缺点,而且性能优于差分进化和粒子群优化算法。  相似文献   

19.
抢修任务多目标动态调度能够有效解决“战时损伤装备不断出现,而抢修时间与抢修力量有限”这一突出矛盾,但由于新抢修需求的出现时刻具有不确定性,采用现有的时间(或数量)分批驱动策略,会导致抢修力量不能对新抢修需求进行及时响应、抢修力量出现闲置、抢修效益降低。为解决该问题,开展了战时抢修任务多目标动态调度的动态驱动策略研究。提出了抢修任务多目标动态调度问题及其总体求解思路。设计了基于抢修需求信息和抢修组状态的2种动态驱动策略,提出了一种新的动态驱动策略“混合分批+基于抢修组状态”。采用均匀设计思想,构造了6组测试问题实例,并通过实验分析了在多种因素共同影响的情况下,3种动态驱动策略的优劣性及适用性。仿真结果表明:与其它动态驱动策略相较,新的动态驱动策略“混合分批+基于抢修组状态”具有明显的优越性。  相似文献   

20.
针对钢铁企业生产与物流一体化协同管理中入库堆垛问题,基于出库次序A型约束、垛位选择分散性约束等,建立了以均衡库存垛位负载和最大化板坯综合匹配度为目标的联合优化模型。结合问题的特点,基于PSO算法,利用收敛指数判断种群进化状态,并对处于"收敛"状态的种群执行精英学习策略,提高粒子的活性,帮助种群跃出局部最优。最后通过实例仿真说明了模型与算法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号