首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
2.
隐写术及隐写分析是信息安全领域研究热点之一.隐写术的滥用造成许多安全隐患,如非法分子利用隐写进行隐蔽通信完成恐怖袭击.传统隐写分析方法的设计需要大量先验知识,而基于深度学习的隐写分析方法利用网络强大的表征学习能力自主提取图像异常特征,大大减少了人为参与,取得了较好的研究效果.为了促进基于深度学习的隐写分析方法研究,对目...  相似文献   

3.
目前,基于深度学习的隐写模型的隐写容量有所提高,但由于网络结构复杂,需要大量的时间来训练。针对此问题进行研究,提出轻量化的可逆神经网络结构,并以此设计了高效图像隐写方案,采用基于密集连接的可逆神经网络实现图像的隐藏与恢复,在减少可逆块的数量的同时,增加每个可逆块中可逆函数f(·)、r(·)和y(·)的卷积块数量来保证图像质量。能够显著降低计算和存储开销,使得模型在计算资源有限的设备上更加高效运行,使模型开发和迭代的过程更加高效,有效地节省了宝贵的计算资源。载体图像与秘密图像通过正向隐藏可逆变换生成含密图像,含密图像与随机变量通过反向恢复可逆变换得到恢复图像。实验结果表明,与HiNet算法相比,轻量级网络结构能够取得良好的图像质量和安全性,同时将训练时间缩短了46%,隐写时间缩短了28%。  相似文献   

4.
图像隐写分析技术综述   总被引:1,自引:0,他引:1       下载免费PDF全文
通过归纳典型专用隐写分析方法和通用隐写分析方法的机制,指出在该领域中,低嵌入率的检测问题、图像源不匹配问题和隐写分析方法的适用性问题是3个亟待解决的问题,进而提出基于富模型和数字取证的隐写分析是两大研究趋势,前者合并不同域的差异特征后,利用集成分类器区分载体和含密图像,后者先用数字取方法证识别图像的类型,再采用该类的隐写分析器检测图像,由此克服图像源不匹配问题,提高检测性能.  相似文献   

5.
信息隐藏和检测技术在当代信息社会中日趋重要,并且得到广泛应用.JPEG是目前最流行的图像文件格式标准之一.概述了隐写和隐写分析的原理,介绍了JPEG图像格式,重点分析JPEG图像的几种典型的隐写术和隐写分析算法,比较了几种隐写术和隐写分析算法的优缺点,并指出了隐写术和隐写分析技术的发展趋势.  相似文献   

6.
隐写术与隐写分析是信息安全领域中一个重要的课题.随着图像隐写的不断发展,为了防止技术被恶意者利用,提出了图像隐写分析技术.本文简单介绍图像隐写类别,并根据适用范围不同将隐写分析分为专用隐写分析和通用隐写分析,总结和归纳各算法的优缺点,探讨深度学习在图像隐写分析上的研究所面临的问题及发展趋势.  相似文献   

7.
提出基于图像颜色特征的隐写分析算法,该算法利用24位BMP图像的颜色特征,采用攻击的方法,根据原始图像和隐写图像在被攻击前后颜色数目和相近颜色对数目变化的不同,提取特征向量,利用支持向量机进行分类,取得了比较好的检测结果.  相似文献   

8.
隐写术与隐写分析是信息安全领域的热门研究方向,近年来得到了广泛的研究与快速的发展。随着深度学习新技术的兴起,深度学习也被引入到隐写术与隐写分析领域,并在方法和性能上取得了一系列突破性的研究成果。为推进基于深度学习的隐写术与隐写分析的研究,本文对目前的主要方法和代表性工作进行了归纳与探讨。对于图像隐写术与隐写分析这两个领域,本文分别各自比较了传统方法和与相关深度学习方法的异同,详细介绍了目前主要的基于深度学习的图像隐写术与隐写分析的基本原理和方法,最后讨论了基于深度学习的图像隐写术与隐写分析仍需要解决的问题及未来的研究趋势。  相似文献   

9.
该算法用来检测JPEG图像中是否藏有秘密信息。根据JPEG图像的结构特征,首先提取量化矩阵,然后根据图像与该量化矩阵的关系判断是否含有秘密信息。本文在理论上分析了算法的正确性,并在实验上验证了算法的有效性。  相似文献   

10.
基于深度学习的JPEG数字图像隐写分析模型检测能力已超越基于人工设计特征隐写分析模型,但检测能力仍存在提升空间.以进一步提升JPEG隐写分析模型的检测能力为目标,借助深度学习方法,为基于深度学习的JPEG隐写分析模型提供辅助信息,从数据输入角度,探索进一步提升隐写分析模型检测能力的途径.基于卷积神经网络,构建隐写分析参照图像生成模型,对待检测图像进行变换,从而获得对应参照图像.之后,将待检测图像与对应参照图像作为隐写分析模型的输入数据,进一步挖掘待检测图像中存在的隐写分析相关信息.为验证所提出算法的有效性,进行针对JPEG自适应隐写算法的对比实验.实验结果表明:所设计的参照图像生成模型能够提升现有基于深度学习的隐写分析模型检测能力,提升效果最多可达6个百分点.  相似文献   

11.
现存的大多数隐写分析方法的泛化能力较弱,无法对未知隐写算法有效检测,使得其分类的准确性在实际运用过程中大幅度降低。针对这个问题,提出了一种基于分组卷积和快照集成的图像隐写分析方法(snapshot ensembling steganalysis network, SENet)。首先,残差卷积块和分组卷积块对图像的特征进行提取并利用;其次,在每个训练周期中得到性能最好的模型作为快照模型;最后将选定的快照模型进行集成后对图像进行分类。该方法应用分组卷积和快照集成的技术,避免了传统集成方法的高训练成本以及单一分类器泛化能力有限的问题。实验结果表明,该方法可以提升隐写分析模型的准确率,并且在训练集和测试集失配时,也能够有效地进行分类,具有较高的模型泛化能力。  相似文献   

12.
现有的基于网络表示学习的链路预测算法主要通过捕获网络节点的邻域拓扑信息构造特征向量来进行链路预测,该类算法通常只注重从网络节点的单一邻域拓扑结构中学习信息,而对多个网络节点在链路结构上的相似性方面研究不足。针对此问题,提出一种基于密集连接卷积神经网络(DenseNet)的链路预测模型(DenseNet-LP)。首先,利用基于网络表示学习算法node2vec生成节点表示向量,并利用该表示向量将网络节点的结构信息映射为三维特征数据;然后,利用密集连接卷积神经网络来捕捉链路结构的特征,并建立二分类模型实现链路预测。在四个公开的数据集上的实验结果表明,相较于网络表示学习算法,所提模型链路预测结果的ROC曲线下方面积(AUC)值最大提高了18个百分点。  相似文献   

13.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

14.
针对自适应图像隐写分析难度大、现有的模型难以对图像有利区域进行针对性分析的问题,提出了一种基于自注意力机制的图像隐写分析模型(self-attention steganalysis residual network,SA-SRNet)。该模型将自注意力机制引入SRNet(steganalysis residual network),引导模型更加关注图像全局对隐写分析有利的区域及图像长距离之间的依赖关系,解决了硬注意力机制在训练时容易陷入局部最优的问题。首先,奖励机制利用强化学习使模型找到对隐写分析最有利的检测点;其次,自注意力机制根据检测点生成注意力重点图像;最后,替换机制用注意力重点图像替换识别错误的图像,提高训练集的质量和模型的判别能力。实验在BOSSbase 1.01数据集上进行,结果表明SA-SRNet可获得比SRNet更好的隐写分析准确率,最多可提高1.8%。  相似文献   

15.
为了提高卷积神经网络(CNN)在图像隐写分析领域的分类效果,构建了一个新的卷积神经网络模型(steganalysis-convolutional neural networks,S-CNN)进行隐写分析。该模型采用两层卷积层和两层全连接层,减少了卷积层的层数;通过在激活函数前增加批量正规化层对模型进行优化,避免了模型在训练过程中陷入过拟合;取消池化层,减少嵌入信息的损失,从而提高模型的分类效果。实验结果表明,相比传统的图像隐写分析方法,该模型减少了隐写分析步骤,并且具有较高的隐写分析准确率。  相似文献   

16.
Based on the best wavelet packet decomposition of images, a new universal steganalysis method with high detection correct ratio is proposed. First, the best wavelet packet decomposition of image based on the Shannon entropy information cost function is made. Second, high order absolute characteristic function moments of histogram extracted from the coefficient subbands obtained by best wavelet packet decomposition are regarded as features. Finally, these features are processed and a back-propagation (BP) ne...  相似文献   

17.
徐攀  苏光伟 《计算机工程与应用》2012,48(28):178-182,213
提出了一种基于小波包分解和小波系数相关性的通用型图像隐写分析方法。对差分处理后的图像进行小波包分解,提取图像及其小波子带的高阶统计量作为特征。利用图像小波系数在尺度方向和空间方向的相关性,使用马尔可夫模型挖掘小波系数层内和层间相关性,提取转移概率矩阵作为特征。针对H4PGP、F5和OutGuess隐写算法的实验表明,方法对上述三种隐写算法具有较好的检测效果。  相似文献   

18.
目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。  相似文献   

19.
王群  张敏情  柯彦  狄富强 《计算机应用研究》2021,38(8):2454-2457,2464
卷积神经网络在隐写分析领域取得了一系列进展,但现有网络结构大多都是专用隐写分析,只针对某一类隐写算法有效.为了提高模型的泛化能力,提出了一种基于新残差网络的图像隐写分析算法.构建了残差分组融合网络结构(W-R2 N),采用分组融合的方式来提高提取多尺度特征的能力,增大每层网络的感受野范围,并且增加每组卷积的对角相关性.相对于Xu-Net和SRNET在S-UNIWARD嵌入率为0.4 bpp情况下隐写分析准确率分别提高了17.13%和0.81%.实验结果表明,相对于现有卷积神经网络,该模型泛化能力更好,并且能够有效提高隐写分析的准确率.  相似文献   

20.
提出了一种联合卷积和递归神经网络的深层网络结构,在卷积神经网络中引入了递归神经网络能学到的组合特征:原始图片先通过一级由k均值聚类学得滤波器的卷积神经网络,得到的结果再同时通过一级卷积和一级递归神经网络,最后得到的特征向量由Softmax分类器进行分类。实验结果表明:在第二级卷积和递归神经网络权重随机的情况下,该网络的识别率已经能够达到98.28%,跟其他网络结构相比,大大减少了训练时间,而且无需复杂的工程技巧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号