共查询到18条相似文献,搜索用时 48 毫秒
1.
为了同步解决云工作流调度时的失效和高能耗问题,提出一种基于可靠性和能效的工作流调度算法.算法为了在截止时间的QoS约束下最大化系统可靠性并最小化调度能耗,将工作流调度过程划分为四个阶段:计算任务优先级、工作流任务聚簇、截止时间子分配和任务调度.算法在满足执行次序的情况下对任务进行拓扑排序,并以通信代价最小为目标对任务进... 相似文献
2.
云环境可以为大规模工作流的执行提供高效、可靠的运行环境,但工作流执行时带来的高能耗不仅会增加云资源提供方的经济成本,还会影响云系统的可靠性,并对环境产生不利影响。为了在满足用户截止时间QoS需求的同时降低云环境中工作流调度的执行能耗,提出一种工作流能效调度算法QCWES。该算法将工作流的能效调度方案求解划分为3个阶段:截止时间重分配、任务调度选择排序以及基于DVFS的最佳资源选择。截止时间重分配阶段旨在将用户定义的全局工作流截止时间在各个任务间进行重分配,任务调度选择排序阶段旨在通过自顶向下的任务分级方式得到任务调度序列;基于DVFS的最佳资源选择阶段旨在为每个任务选择带有合适电压/频率等级的最优目标资源,在满足任务的子截止时间的前提下使总体能耗达到最小。通过随机工作流和基于高斯消元法的现实工作流结构,对算法的性能进行仿真实验分析。结果表明,所提算法可以在满足截止时间约束下降低工作流的执行能耗,实现用户方的QoS需求与资源方的能耗间的均衡。 相似文献
3.
为满足云工作流实例的多样化需求,根据工作流的特点和云环境中资源部署结构,建立多服务质量指标的云工作流调度模型。对蚁群算法进行改进,解决其收敛速度慢、易陷入局部最优等缺点。利用用户对服务质量不同程度的偏好,引入云任务优先次序启发式规则,提出一种基于服务质量的云工作流调度算法(SPACO)。在Cloud Sim平台上,对云工作流调度模型和算法进行仿真分析,将仿真结果与基本蚁群算法(ACO)、改进的蚁群算法(PACO)进行比较,其结果表明该算法能缩短执行时间、降低能耗成本,验证了该模型的可行性和算法的有效性。 相似文献
4.
5.
经过对已有云工作流调度算法中可靠性问题进行分析研究,针对一些算法在任务调度过程中只考虑提高整个工作流的可靠性而牺牲了时间或增加花费的问题,结合云计算的特点,提出一种基于可靠性的工作流调度策略。该策略结合了工作流中任务的可靠性,充分考虑任务的优先顺序并结合复制的思想,在减少传输过程失败率的同时降低传输时间,使整个工作流在降低完成时间的同时,提高整体可靠性。通过实验和分析表明,通过该策略云工作流在不同任务数和通信运算比(CCR)的可靠性比异态最早结束时间算法(HEFT)算法及其改进算法--SHEFTEX都有所提升,完成时间比HEFT算法有所减少。 相似文献
6.
7.
为了降低云环境中科学工作流调度的执行代价与数据中心能耗,提出了一种基于能效感知的工作流调度代价最优化算法CWCO-EA。算法在满足截止时间约束下,以最小化工作流执行代价与降低能耗为目标,将工作流的任务调度划分为四步执行。首先,通过代价效用的概念设计虚拟机选择策略,实现了子makespan约束下的任务与最优虚拟机间的映射;其次,通过串行与并行任务合并策略,同步降低了工作流的执行代价与能耗;然后,通过空闲虚拟机重用机制,改善了租用虚拟机的利用率,进一步提高了能效;最后,通过任务松驰策略实现了租用虚拟机的能力回收,节省了能耗。通过四种科学工作流的仿真实验,结果表明,CWCO-EA算法比较同类型算法,在满足截止时间的同时,可以同步降低工作流的执行代价与执行能耗。 相似文献
8.
为了同步考虑用户的任务QoS需求和云资源提供方的收益,提出一种云环境中满足帕累托最优的多目标最优化DAG(Directed Acyclic Graph)粒子群算法MODPSO(Multi-objective DAG Particle Swarm Optimization)。综合考虑任务执行跨度、执行代价与执行能耗的三目标同步最优化,设计基于DVFS的离散PSO调度优化方法。重新定义PSO的种群粒子进化过程和更新规则,进而得到多目标优化工作流调度解。通过人工合成工作流和现实科学工作流进行仿真测试,并对算法性能进行分析。结果表明,该算法可以通过非支配集的方式实现冲突多目标的调度优化求解。在满足用户QoS的同时,得到最优解的Pareto边界集,实现调度性能与系统能耗的均衡。 相似文献
9.
为了提高资源行为动态异构的云环境中工作流任务的调度效率,提出了一种基于动态关键路径的工作流调度算法CWS-DCP。算法将工作流任务结构定义为有向无循环图DAG模型,改进了传统关键路径的一次性搜索模式,结合云资源可用性动态可变的特征,以动态自适应方式搜索关键路径,并确定关键任务。同时,在关键任务调度后,局部DAG的关键路径搜索根据资源可用性再次迭代更新,从而动态决策任务与资源间的调度方案。通过仿真实验,构建了三种不同类型的工作流结构作为测试数据源,并与其他六种同类型的启发式和元启发式算法进行了性能比较。实验结果表明,在资源可用性动态改变和工作流规模不断增大的情况下,CWS-DCP算法在多数工作流结构中均能得到执行跨度更好的调度方案和更少的调度开销。 相似文献
10.
11.
资源调度问题一直是云计算环境下的热点研究问题,然而当前的大部分研究都集中在满足用户的时间或成本需求上,很少考虑用户在调度过程中对安全的需求。针对这一问题,在对常见的云环境下工作流任务的资源调度问题进行建模的基础上,提出了一个安全约束模型,并使用变近邻粒子群算法对该问题进行了求解。最后在CloudSim仿真平台上,用最大 最小蚁群算法和遗传算法与该算法进行了对比,实验结果表明,该算法具有很好的可用性和寻优能力。关键词: 相似文献
12.
工作流调度算法仅适用于单个复杂工作流实例,而不适用于实例密集型云工作流实例,为此,提出了基于实例密集型的云工作流调度算法(MCUD)。MCUD算法先对待处理的一组工作流实例进行分类,再对分类后的同类工作流实例采用一种新的分配方法将用户指定的总最后期限分配到各任务;同时,在调度的过程中动态地调整后续任务的子最后期限。MCUD算法对同类工作流实例中的任务分配不同子最后期限,减小了资源竞争,提高了资源的利用率。仿真实验表明,MCUD相比于其他算法,在满足总的最后期限的前提下更进一步地降低了执行成本和执行时间。 相似文献
13.
云服务提供商在给用户提供海量虚拟资源的同时,也面临着一个现实的问题,即怎样调度这些资源,以最小的代价(完工时间、执行费用、资源利用率等)完成工作流的执行。针对IaaS环境下的工作流调度问题,以完工时间和执行费用作为目标,提出了一种基于分解的多目标工作流调度算法。该算法结合了基于列表的启发式算法和多目标进化算法的选择过程,采用一种分解方法,将多目标优化问题分解为一组单目标优化子问题,然后同时求解这些单目标子问题,使得调度过程更为简单有效。算法利用天马项目发布的现实世界中的工作流进行实验,结果表明,和MOHEFT算法以及NSGA-II*算法相比较,所提出的算法能得到更优的Pareto解集,同时具有更低的时间复杂度。 相似文献
14.
针对云计算环境中资源具有规模庞大、异构性、多样性等特点,提出了一种对资源进行模糊聚类的工作流任务调度算法。经过对网络资源属性进行量化、规范化,以预先构建的任务模型和资源模型为基础,结合模糊数学理论划分资源,使得在任务调度时能够较准确地优先选择综合性能较好的资源类簇,缩短了任务资源相匹配的时间,提高了调度性能。通过仿真实验将此算法与HEFT、DLS进行比较,实验结果表明,当任务在[0,100]范围增加时,该算法平均SLR比HEFT小34%,比DLS小99%,其平均Speedup比HEFT大59%,比DLS大102%;当资源在[0,100]范围增加时,该算法平均SLR比HEFT小36%,比DLS小97%,其平均Speedup比HEFT大45%,比DLS大108%。所提算法实现了对资源的合理划分,且在执行跨度方面具有优越性。 相似文献
15.
16.
17.
为了实现任务执行效率与执行代价的同步优化,提出了一种云计算环境中的DAG任务多目标调度优化算法。算法将多目标最优化问题以满足Pareto最优的均衡最优解集合的形式进行建模,以启发式方式对模型进行求解;同时,为了衡量多目标均衡解的质量,设计了基于hypervolume方法的评估机制,从而可以得到相互冲突目标间的均衡调度解。通过配置云环境与三种人工合成工作流和两种现实科学工作流的仿真实验测试,结果表明,比较同类单目标算法和多目标启发式算法,算法不仅求解质量更高,而且解的均衡度更好,更加符合现实云的资源使用特征与工作流调度模式。 相似文献
18.
服务器执行任务产生的能耗是云计算系统动态能耗的重要组成部分。为降低云计算系统任务执行的总能耗,提出了一种基于能耗优化的最早完成时间任务调度方法,建立了服务器动态功率计算模型,基于动态功率的服务器执行能耗模型,以及云计算系统的能耗优化模型。调度策略根据任务的截止时间要求和在不同服务器上的执行能耗,选择不同的调度算法,以获得最小任务执行总能耗。实验结果证明,提出的任务调度方法,能够较好地满足任务截止时间的要求,降低云计算系统任务执行的总能耗。 相似文献