共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
小型化是推动伺服电机技术进步的重要研究方向。通过研究提出具有转矩密度高、空间设计灵活优势的双定子盘盘式横向磁通永磁同步电机,实现电机设计的高度集成化,减小电机驱动系统体积。设计一台额定功率5.4 kW、额定转速3 000 r/min的双定子盘盘式横向磁通永磁同步电机,分析电机的主要电磁性能。为减小电机转矩脉动,提出齿极设计参数优化以及不对称定子盘结构两种手段,进一步研究不对称定子盘结构对电机转子结构强度的影响。实验验证了该电机的可行性以及主要性能参数。 相似文献
3.
4.
磁通切换型永磁电机(简称磁通切换电机)是定子励磁型电机的一种,由于它在定子和转子上都开槽,因此,加载运行时尤其在低速时具有较大的转矩脉动和振动噪声。在这类电机中,由于交直轴电感几乎相等,因此其磁阻转矩平均值几乎为零,但是,会引起一定的转矩脉动。该文运用冻结磁导率方法,研究了磁通切换电机的磁阻转矩及其引起的转矩脉动产生机理;同时,该文也研究了磁阻转矩随电枢电流和定子绕组结构的变化规律。研究结果显示:在采用id=0控制时,磁阻转矩对输出转矩没有贡献,其平均值几乎为零,只会导致转矩脉动。此外,该文也分析了定、转子分别削角对磁阻转矩的影响规律。研究结果显示,采用转子直角削角和定子圆角削角相结合的方式可以使转矩脉动由25.3%降低到5.3%。 相似文献
5.
6.
7.
永磁同步电机(PMSM)因气隙磁场畸变及逆变器的非线性特性,容易使电流波形发生畸变,从而导致转矩脉动。在此设计了一种基于谐波电流补偿的转矩脉动抑制方法,在双闭环控制基础上,加入谐波注入补偿环节补偿三相电流的谐波。实验结果表明,该控制方法有效提高了系统的控制精度,能有效改善电流波形从而抑制电机运行时的转矩脉动。 相似文献
8.
9.
用谐波注入抑制永磁同步电机转矩脉动 总被引:28,自引:0,他引:28
气隙磁场的畸变和逆变器的非线性特性使永磁同步电动机(permanentmagnetsynchronousmotor,PMSM)电流中含有大量高次谐波,电流波形发生畸变,导致电机电磁转矩脉动。针对这一问题,提出了一种新颖的谐波抑制算法,在建立PMSM谐波数学模型的基础上,利用注入谐波电压的方式来抵消电机运行时电机电流中的谐波分量,改善电机电流波形,抑制电机电流谐波分量和电磁转矩脉动。通过仿真及实验验证了该算法的有效性。该算法不需要增加任何硬件和离线实验测量,具有较强的灵活性和适应性。 相似文献
10.
磁极偏移削弱永磁电机齿槽转矩方法 总被引:13,自引:0,他引:13
研究了永磁电机磁极偏移对齿槽转矩的影响,发现当每极槽数不为整数时,磁极偏移会引入新的齿槽转矩谐波.因此要通过磁极偏移减小齿槽转矩,除了减小永磁体对称时存在的齿槽转矩谐波外,还要减小新引入的低次谐波.为解决现有的永磁体偏移角度计算方法存在的不足,本文推导了磁极偏移时齿槽转矩的表达式,提出了确定永磁体偏转角度的新方法.有限元计算结果表明:与现有的方法相比,本文提出的磁极偏移角度计算方法得到的偏转角度对原有齿槽转矩谐波以及新引入的低次谐波都有较好的削弱作用,因此能较好地减小齿槽转矩. 相似文献
11.
12.
13.
永磁无刷电机转矩脉动分析及削弱方法 总被引:1,自引:0,他引:1
抑制转矩脉动是永磁无刷电机研究重点,国内外专家学者提出了诸多解决方法.在分析永磁无刷电机脉动转矩的组成及产生原因的基础上,综合介绍了削弱永磁无刷电动机转矩脉动常用的一些方法. 相似文献
14.
在各类驱动电机中,永磁同步电机以其能量密度高,效率高、响应快等优势,广泛应用于电动汽车电驱动系统中。电机本体存在气隙磁场分布的非正弦特性、齿槽效应,逆变器存在死区时间和管压降等会引发电机的转矩脉动问题,导致电驱动系统产生大量电磁噪声。国内外学者提出了多种优化和改进措施,结合近年来国内外的研究成果,针对电机本体齿槽转矩脉动采用的斜槽法和分数槽法、针对电流谐波转矩脉动的迭代学习控制、重复控制法、附加转矩闭环控制和谐波电流注入法等,分析了各类方法的优缺点,为改善电动汽车的舒适性和电驱动系统的可靠性提供了理论参考。 相似文献
15.
16.
基于卡尔曼滤波器的无刷直流电动机转矩脉动控制系统 总被引:2,自引:0,他引:2
针对正弦波直流无刷电动机转矩纹波控制问题进行了讨论。提出了考虑转子磁链谐波影响的无刷直流电机的数学模型.在此基础上运用卡尔曼滤波器对电机磁链进行在线估计,并设计了一种转矩纹波控制系统。着重分析了卡尔曼滤波器的设计及其性能。仿真结果证明该控制系统能有效地消除转矩纹波。 相似文献
17.
采用矢量控制的方法在MATLAB/SIMULINK环境下,构建了永磁同步电动机(PMSM)的动态仿真模型,并进行了加、减速和加、减载的仿真。同时比较了不同电流滞环环宽下的转矩脉动情形。由仿真结果可知,所建立的基于PWM的转速、电流双闭环控制系统能够很好地控制永磁同步电动机。 相似文献