首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为了实现对目标的准确测量和跟踪,无人机光电平台必须要有较高的视轴(LOS)稳定精度,视轴稳定系统必须要有良好的控制性能和抗干扰能力。为了提高平台的视轴稳定精度,提出了一种将模糊比例-积分-微分(PID)控制器与扰动观测器相结合的研究方法,解决了单一方法抑制扰动的局限性,有效提高了抗干扰能力。试验表明,在1 Hz的力矩扰动下,加入基于速度扰动观测器(VDOB)的稳定回路的隔离度为4.31%,小于未加入VDOB回路的5.84%;在1 Hz的速度扰动下,加入VDOB的稳定回路的隔离度为4.72%,小于未加入VDOB回路的5.56%。试验结果证明,模糊PID能隔离大部分扰动信号,扰动观测器能进行有效反馈补偿,两者结合的方法提高了系统抗干扰能力和平台的稳定精度。通过对平台稳定回路的研究以及视轴稳定精度的提高,能改善机载光电平台的跟踪性能,有效增强无人机的作战力。  相似文献   

2.
贺顺 《计算机工程》2007,33(15):224-226
电子稳像系统的核心是运动估计和运动补偿。为了提供运动估计的精度和降低时间开销,达到实时应用的要求,该文提出了基于宏块的步进全局运动估计算法,获得图像序列的全局运动矢量;给出了一个新的应用于电子稳像系统中运动估计与运动补偿模块的运动估计、运动补偿原理框图;采用两步补偿算法完成对图像序列的运动补偿,得到稳定的图像序列输出。仿真结果表明,采用的方法是高效、可行的。  相似文献   

3.
王雪闯  王会明  赵振华 《控制与决策》2023,38(10):2881-2887
为了使移动机器人获得高精度和快速收敛的跟踪性能,设计一种基于积分终端滑模和滑模观测器的轨迹跟踪控制方法.首先,考虑到移动机器人在实际运动过程中会受到地面湿滑、摩擦等原因引起的侧滑扰动的影响,建立其在该扰动影响下的运动学模型;然后,利用该动态模型设计滑模观测器来估计系统受到的扰动;接着,将估计的扰动值前馈至反馈控制器,用来抑制扰动对系统控制性能的影响,从而达到削弱抖振的目的;同时,基于跟踪误差设计积分终端滑模面,并结合滑模面和扰动估计设计新型积分终端滑模控制器;最后,基于Lyapunov稳定性理论对整个闭环系统进行稳定性分析.仿真实验结果表明,所设计的控制器具有更高的跟踪精度和更强的鲁棒性.  相似文献   

4.
为了消除机载环境对机载视频图像的影响,设计一种应用于微型无人飞行器的机载光电平台复合式稳像系统。分析机载光电平台扰动在频率和振幅分布上的特点,针对各类稳像方法在不同频率和振幅上抑制或补偿扰动的局限性,设计并实现了一种由四类稳像环节并行互补所构成的复合式稳像结构。该系统能够有效弥补单一稳像方法的局限性,提高机载光电平台的稳像能力。  相似文献   

5.
LuGre摩擦模型对伺服系统的影响与补偿   总被引:4,自引:1,他引:4  
摩擦是影响伺服系统性能的一个主要因素. 为了研究摩擦的影响与补偿, 本文首先建立了基于动态LuGre摩擦的机电伺服系统模型. 根据LuGre模型, 构造了一个非线性观测器来估计摩擦力矩. 然后, 积分反步自适应控制算法被设计从而实现了摩擦补偿和负载扰动估计, 并使用Lyapunov函数证明了闭环系统的稳定性. 仿真结果表明:LuGre摩擦会对伺服系统产生极限环振荡以及低速爬行的影响, 并且提出的补偿方法能够降低摩擦对伺服系统性能的影响以及提高了系统的跟踪精度和鲁棒性.  相似文献   

6.
针对高精度光电伺服稳定平台系统中摩擦和各种非线性干扰对跟踪精度的影响问题,提出了一种基于LuGre摩擦模型的积分型滑模自适应控制算法。首先建立了基于动态LuGre摩擦的伺服系统模型,根据LuGre模型,构造了一个非线性观测器来估计摩擦中的未知状态变量;然后设计积分型滑模自适应控制算法实现摩擦补偿和各种扰动的估计,通过设计最优的反馈控制律,保证了积分型滑模的收敛速度,并引入自适应思想设计滑模控制器,有效的减弱了滑模控制中的颤抖现象;最后利用Lyapunov理论证明了控制系统的稳定性。仿真结果表明:所提方法有效的抑制了摩擦等各种干扰对稳定平台系统的影响,在提高系统跟踪精度的同时增强了系统的鲁棒性能,该方法也简化了设计过程,具有一定的应用价值。  相似文献   

7.
在永磁同步电机(PMSM)自抗扰控制器(ADRC)系统中,扩张状态观测器(ESO)在扰动较多且幅值变化大时难以保证估计精度,而普通的模型补偿自抗扰控制器的性能又受到参数辨识精度和辨识算法复杂度的限制.针对该问题,提出一种伺服系统优化的模型补偿自抗扰控制方法.以交轴电流和实际转速作为线性扩张状态观测器(LESO)输入,采用二阶LESO对系统总扰动进行观测,将此观测值作为补偿模型补偿到速度环ADRC的ESO中,并在控制量的扰动补偿项中去除该补偿模型,实现模型补偿的目的.仿真和实验结果表明,该方法显著降低了ADRC中ESO要估计量的变化幅度,提高了扰动估计精度,同时不需要进行额外的参数辨识,可实时在线获取补偿模型,具有较好的动态特性与抗扰动能力.  相似文献   

8.
基于坐标变换公式和矢量旋转公式,分析了视轴稳定系统中各光学器件对于光线矢量传输的影响,并对光线矢量传输进行追踪,建立了视轴稳定系统的光学传输模型,数值模拟了光学平台角度振动对探测视轴漂移的影响,从而获到了基于快速倾斜反射镜的视轴校正系统的角度补偿量.模拟结果表明,对该光学系统的视轴校正,快速倾斜反射镜绕轴旋转的角度补偿量为0,绕轴旋转的角度补偿量与位敏传感器上沿方向的投影是一种简单的线性关系.  相似文献   

9.
用神经网络实现精密伺服系统中扰动力矩的动态补偿   总被引:1,自引:0,他引:1  
分析了扰动力矩对精密伺服系统的影响.提出使用神经网络方法建立扰动力矩的 数学模型,并根据全补偿原则设计补偿环节,实现扰动力矩的动态补偿.试验结果表明这种 新的补偿方法对提高伺服系统的精度十分有效,具有实际应用价值.  相似文献   

10.
为了进一步提高机载雷达稳定平台的抗干扰能力,以满足其愈来愈高的精度需求;提出一种基于“先微分,后预报”的机载雷达稳定平台自抗扰控制方案;对比于传统自抗扰控制器,此方案将扩张状态观测器的扰动观测输出通过微分预报之后在补偿系统的扰动,有效地减少了扰动估计滞后的现象,显著提高了对系统扰动补偿的实时性;通过Matlab仿真实验表明,“先微分,后预报”自抗扰控制方案的超调量仅有1.11%,稳态时间只有0.52 s,远远小于PID控制,而其对扰动的响应幅值仅为PID控制的12.8%,且与PID控制相比,其对连续扰动的抑制能力更为优秀。  相似文献   

11.
针对并联混合动力汽车模式切换过程中动力中断和扭矩波动对车辆驾驶性能的影响,提出一种由纯电动向混合驱动模式切换的协调控制方法.首先,根据切换过程动力学分析及控制目标,将该过程分为离合器接合前后两部分.然后,对前者设计干扰观测器估计并补偿扭矩干扰和模型不确定性,提出基于干扰补偿的协调控制策略,以消除干扰,实现发动机的快速起动、同步;对后者引入发动机扭矩延迟变量,并利用电机扭矩补偿发动机扭矩误差,设计基于电机补偿的扭矩切换协调控制策略,实现平滑切换.仿真结果表明,该控制策略与传统控制方法相比,冲击度降低50.5%,有效减小了扭矩波动,确保了模式切换的平顺性,提高了驾驶性能.  相似文献   

12.
针对飞机在非对称运动下的双侧机轮协调控制问题, 提出一种基于滑模干扰估计的模型预测控制方法. 首先, 通过对飞机制动过程横纵方向力矩机理分析并分别考虑左右机轮对刹车性能的影响, 建立全面刻画系统动态的地面滑跑动力学模型. 在此基础上, 设计滑模观测器对侧风干扰进行实时估计, 利用补偿机制实现对侧风扰动的有效抑制. 此外, 提出基于前轮荷载状态门限特征和结合系数阈值范围特征的分析方法, 解决切换跑道环境辨识问题. 设计非线性模型预测算法, 实现飞机纵向防滑刹车和横向跑道纠偏的协调控制. 最后, 在侧风干扰、跑道切换以及不对称着陆等情况下进行仿真实验, 验证了所提出的控制策略能够有效提升刹车系统的防滑效率及纠偏性能.  相似文献   

13.
针对日心悬浮轨道航天器编队飞行控制问题,应用线性自抗扰控制(LADRC)技术设计了编队飞行控制器.首先,考虑外部扰动,基于圆形限制性三体问题(CRTBP)模型推导了航天器编队日心悬浮轨道非线性动力学方程.其次,提出了一种基于扰动估计和补偿的编队飞行控制方法,避免了通过航天器局部线性化动力学方程或精确非线性动力学方程设计编队飞行控制器时存在的模型精确性过度依赖等缺陷.最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动的情况下,所设计的控制器实现了高精度的编队飞行控制,并优于NASA制定的5 mm编队飞行精度标准.  相似文献   

14.
三轴车载惯性稳定平台为复杂的MIMO非线性系统,针对其在不确定扰动下的伺服控制问题,本文设计了一种神经网络反演滑模控制器(NNBSMC).首先,选用反演法对其解耦,同时引入滑模控制律增加系统的抗干扰性;其次针对框架间的非线性摩擦力与系统耦合选用RBF神经网络作为扰动估计器,以便实时估计与补偿;然后采用前向增稳通道应对建...  相似文献   

15.
This study addresses the dynamic modelling and indirect disturbance compensation control of planar parallel robotic motion platform with three degrees of freedom (3-DOF) in the presence of parameter uncertainties and external disturbances. The proposed planar parallel motion platform is a singularity free manipulator and has three manipulator legs located on the same plane linked with a moving platform. Of the three aforementioned manipulator legs, two legs have a prismatic–revolute–prismatic (PRP) joint configuration each with only one prismatic joint deliberated to be active, and the other leg consists of prismatic–revolute–prismatic (PPR) joint configuration with one active prismatic joint. The closed form kinematic solution (both forward and reverse kinematics) for the platform has been obtained in completion. In addition, the dynamic model for the platform has been communicated using the energy based Euler–Lagrangian formulation method. The proposed controller is based on a computer torque control with disturbance compensation integrated with it. Disturbance vectors comprising disturbances due to parameter variations, payload variations, frictional effects and other additional effects have been estimated using an extended Kalman filter (EKF). The EKF proposed for this specific platform uses only position and orientation measurements for estimation and noise mitigation. Simulations with a characteristic trajectory are presented and the results have been paralleled with traditional controllers such as the proportional integral derivative (PID) controller and computed torque controller (CTC). The results demonstrate satisfactory tracking performance for the proposed controller in the presence of parameter uncertainties and external disturbances.  相似文献   

16.
针对机载挂飞转台的摆扫速度控制问题,提出了一种利用模糊自适应PID技术进行前馈补偿的复合控制策略。首先根据实际应用提出摆扫转台的期望摆扫速度曲线,并对直流力矩电机驱动的摆扫转台进行了建模;然后根据扰动前馈补偿的控制原理,提出了模糊自适应PID前馈补偿方法,为摆扫转台的速度环设计了模糊PID控制器,并在此基础上设计了与之相适应的的自适应前馈补偿函数;最后进行了仿真结果验证。通过Matlab仿真结果表明,相对于模糊PID控制,所设计的模糊自适应PID前馈补偿控制器能有效的跟踪期望的转台摆扫速度,大幅地提高了在有稳定干扰和摆扫速度越变情况下的跟踪精度。  相似文献   

17.
In this paper, a data-driven method for disturbance estimation and rejection is presented. The proposed approach is divided into two stages: an inner stabilization loop, to set the desired reference model, together with an outer loop for disturbance estimation and compensation. Inspired by the active disturbance rejection control framework, the exogenous and endogenous disturbances are lumped into a total disturbance signal. This signal is estimated using an on-line algorithm based on a datadriven predictor scheme, whose parameters are chosen to satisfy high robustness-performance criteria. The above process is presented as a novel enhancement to design a disturbance observer, which constitutes the main contribution of the paper. In addition, the control strategy is completely presented in discrete time, avoiding the use of discretization methods for its digital implementation. As a case study, the voltage control of a DC-DC synchronous buck converter afected by disturbances in the input voltage and the load is considered. Finally, experimental results that validate the proposed strategy and some comparisons with the classical disturbance observer-based control are presented.  相似文献   

18.
Most control methods of underwater vehiclemanipulator systems (UVMS) are based on the computed torque method that is used for underwater robotic vehicles. We have proposed a resolved acceleration control (RAC) method for UVMS. In this article, we propose a disturbance compensation control method for both vehicle and manipulator based on the RAC method. Experimental results using an underwater robot with a vertical planar 2-link manipulator show that the proposed control method has good control performance.  相似文献   

19.
针对六自由度小型四旋翼无人机在轨迹跟踪控制过程中,单一控制器构成的控制系统存在外部未知干扰,系统的鲁棒性以及轨迹跟踪精度容易产生较大的波动问题,该文章提出了一种基于固定时间扰动观测器的全闭环控制方案,即针对位置与姿态的双闭环控制;首先利用固定时间理论设计了两个扰动观测器,在固定时间内对扰动做出估计并进行补偿;在此观测器对扰动值的精确估计基础之上,设计了两个具有扰动补偿能力的非线性跟踪控制器;李雅普诺夫稳定性理论证明了所述方法的有效性;仿真实验中,为对比所述控制方法的有效性,同时采用传统单一控制器构成的无人机控制系统进行对比分析;在无人机质量为m=1.44 kg、环境重力加速度为g=9.8 m/s2以及其他模型参数一致的前提下,进行大量的仿真实验验证了所提出的基于固定时间扰动观测器的扰动补偿控制系统,能够保证小型四旋翼无人机六自由度受到复杂外部干扰时准确估计出外部干扰值,并实现无人机进行高精度轨迹跟踪控制,且轨迹跟踪精度与抗扰性能皆优于传统单一控制器构成的无人机控制系统.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号