首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power-aware routing protocols in ad hoc wireless networks   总被引:5,自引:0,他引:5  
An ad hoc wireless network has no fixed networking infrastructure. It consists of multiple, possibly mobile, nodes that maintain network connectivity through wireless communications. Such a network has practical applications in areas where it may not be economically practical or physically possible to provide a conventional networking infrastructure. The nodes in an ad hoc wireless network are typically powered by batteries with a limited energy supply. One of the most important and challenging issues in ad hoc wireless networks is how to conserve energy, maximizing the lifetime of its nodes and thus of the network itself. Since routing is an essential function in these networks, developing power-aware routing protocols for ad hoc wireless networks has been an intensive research area in recent years. As a result, many power-aware routing protocols have been proposed from a variety of perspectives. This article surveys the current state of power-aware routing protocols in ad hoc wireless networks.  相似文献   

2.
假冒和窃听攻击是无线通信面临的主要威胁。在个人通信系统中,为了对无线链路提供安全保护,必须对链路上所传送的数据/话音进行加密,而且在用户与服务网络之间必须进行相互认证。近年来,人们在不同的移动通信网络(如GSM,IS-41,CDPD,Wireless LAN等)中提出了许多安全协议。然而,这些协议在个人通信环境中应用时存在不同的弱点。本文基于个人通信系统的双钥保密与认证模型,设计了用户位置登记认证协议;并采用BAN认证逻辑对协议的安全性进行了形式化证明,也对协议的计算复杂性进行了定性分析。分析表明,所提出的协议与现有的协议相比具有许多新的安全特性。  相似文献   

3.
Body Area Networks: A Survey   总被引:6,自引:2,他引:4  
Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.  相似文献   

4.
Several applications have been proposed for wireless sensor networks, including habitat monitoring, structural health monitoring, pipeline monitoring, precision agriculture, active volcano monitoring, and many more. The energy consumption of these applications is a critical feasibility metric that defines the scope and usefulness of wireless sensor networks. This paper provides a comprehensive energy model for a fully functional wireless sensor network. While the model uses toxic gas detection in oil refineries as an example application, it can easily be generalized. The model provides a sufficient insight about the energy demand of the existing or proposed communication protocols.  相似文献   

5.
In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender’ energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.  相似文献   

6.
Design challenges for energy-constrained ad hoc wireless networks   总被引:15,自引:0,他引:15  
Ad hoc wireless networks enable new and exciting applications, but also pose significant technical challenges. In this article we give a brief overview of ad hoc wireless networks and their applications with a particular emphasis on energy constraints. We then discuss advances in the link, multiple access, network, and application protocols for these networks. We show that cross-layer design of these protocols is imperative to meet emerging application requirements, particularly when energy is a limited resource.  相似文献   

7.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

8.
The two‐way relay (TWR) protocols are efficient in providing appreciable throughput gains in wireless networks through the use of network coding to combine packets from multiple channels. The key determinant factor in driving the throughput improvement is the degree of simultaneity achieved in the relay scheme. In this paper, we propose a new TWR protocol named interference cancellation TWR (IC‐TWR), which combines network coding, spatial diversity, and IC techniques to arrive at high degree of simultaneity and in the meanwhile to relax the requirement on channel state information as compared with TWR schemes based on amplify‐and‐forward. Numerical analysis shows that the proposed IC‐TWR is uniformly advantageous over the traditional decode‐and‐forward scheme in terms of system throughput and end‐to‐end delay. The proposed scheme may be useful for system designers of high‐speed multimedia applications in wireless mobile networks, wireless cellular networks, wireless sensor networks, and so on. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The multimedia transmission based real-time applications have posed a big challenge to wireless sensor networks (WSNs) where both reliability and timeliness need to be guaranteed at the same time, to support an acceptable Quality of Service (QoS). The existing real-time routing protocols, however, are not able to meet the QoS requirements of realtime applications because of the inherent resource constraint of sensor nodes and instability of wireless communication. Therefore, we propose a real-time scheme in this paper, including a QoS-aware routing protocol and a set of fault recovery mechanisms, for (m,k)-firm based real-time applications over WSNs. A local status indicator which is specially devised for (m,k)-firm stream, is used for intermediate nodes to monitor and evaluate their local conditions. The proposed routing protocol takes into account of packet deadline, node condition and remaining energy of next hop, to make optimal forwarding decision. Additionally, according to the stream QoS and node condition, the proposed fault recovery mechanisms are utilized for nodes to handle the congestion, link failure and void problems occurred during transmission and remain the desired reliability and timeliness requirements. The proposed scheme has been well studied and verified through simulations. The results have proved the efficiency of the proposed scheme in terms of high successful transmission ratio, small end-to-end delay and long lifetime of network.  相似文献   

10.
Due to recent advances in wireless communication technologies, there has been a rapid growth in wireless sensor networks research during the past few decades. Many novel architectures, protocols, algorithms, and applications have been proposed and implemented. The efficiency of these networks is highly dependent on routing protocols directly affecting the network life-time. Clustering is one of the most popular techniques preferred in routing operations. In this paper, a novel energy efficient clustering mechanism, based on artificial bee colony algorithm, is presented to prolong the network life-time. Artificial bee colony algorithm, simulating the intelligent foraging behavior of honey bee swarms, has been successfully used in clustering techniques. The performance of the proposed approach is compared with protocols based on LEACH and particle swarm optimization, which are studied in several routing applications. The results of the experiments show that the artificial bee colony algorithm based clustering can successfully be applied to WSN routing protocols.  相似文献   

11.
Energy efficient broadcast is indispensable for many applications in wireless ad hoc networks. It has been proved that network coding has great potential to improve performance in terms of energy consumption in wireless ad hoc networks. However, the power of network coding depends on the availability of coding opportunities, which in turns depends on how routing paths are established. It is thus beneficial to establish paths in such a way that more coding opportunities are created. By combining network coding and connected dominating set (CDS), we explore energy minimal broadcast protocols in wireless ad hoc networks. The rationale behind this combination is that CDS provides better chances for data flows to intersect, which means more coding opportunities. We design a scheme, named NCDS, that uses network coding over connected dominating set, to reduce energy consumption. Analysis and experimental results show that NCDS outperforms broadcast algorithms that use CDS or network coding alone.  相似文献   

12.
Mobility management in next-generation wireless systems   总被引:29,自引:0,他引:29  
This paper describes current and proposed protocols for mobility management for public land mobile network (PLMN)-based networks, mobile Internet protocol (IP) wireless asynchronous transfer mode (ATM) and satellite networks. The integration of these networks will be discussed in the context of the next evolutionary step of wireless communication networks. First, a review is provided of location management algorithms for personal communication systems (PCS) implemented over a PLMN network. The latest protocol changes for location registration and handoff are investigated for mobile IP followed by a discussion of proposed protocols for wireless ATM and satellite networks. Finally, an outline of open problems to be addressed by the next generation of wireless network service is discussed  相似文献   

13.
链路可靠的无线传感器网络组播路由协议   总被引:2,自引:0,他引:2       下载免费PDF全文
宋震  周贤伟  林亮 《电子学报》2008,36(1):64-69
在无线传感器网络实际应用中,组播正在发挥着越来越重要的作用.但由于能量等多方面的因素,使得为无线传感器网络设计一个有效的组播路由是非常困难的.针对无线传感器网络中节点的能量限制,通过寻求节点间最短路径,提出一种能量有效的链路可靠组播路由协议(RLMR).该协议充分考虑到网络中节点的能耗因素和两节点间的链路可靠性等,通过对这两个因素的综合考虑,让能量较多并且以发送节点更靠近的节点承担更多传输任务的方式,为数据流优化路由选择,均衡无线传感器网络节点的能量消耗,以延长网络的生存时间.仿真结果证明了RLMR的有效性和可靠性.  相似文献   

14.
This paper addresses network coding in wireless networks in conjunction with medium access control (MAC). It is known that coding over wired networks enables connections with rates that cannot be achieved by routing. However, the properties of wireless networks (e.g., omnidirectional transmissions, destructive interference, single transceiver per node, finite energy) modify the formulation of time-varying network coding in a way that reflects strong interactions with underlying MAC protocols and deviates from the classical approach used in wired network coding. To perform network coding over conflict-free transmission schedules, predetermined network realizations are separately activated by a time-division mechanism and the content of network flows is derived through network coding to optimize performance measures such as achievable throughput and energy costs. A systematic method is presented to construct linear wireless network codes and interactions with MAC schedules are discussed under wireless assumptions. Network coding is also extended to operate with arbitrary (random or scheduled access based) MAC protocols. Alternatively, conflict-free transmission schedules are jointly constructed with network codes by decomposing wireless networks into subtrees and employing graph coloring on simplified subtree graphs. Finally, network coding and plain routing are compared in terms of throughput, energy and delay performance under different MAC solutions.  相似文献   

15.
Sensor networks are deployed in numerous military and civil applications, such as remote target detection, weather monitoring, weather forecast, natural resource exploration and disaster management. Despite having many potential applications, wireless sensor networks still face a number of challenges due to their particular characteristics that other wireless networks, like cellular networks or mobile ad hoc networks do not have. The most difficult challenge of the design of wireless sensor networks is the limited energy resource of the battery of the sensors. This limited resource restricts the operational time that wireless sensor networks can function in their applications. Routing protocols play a major part in the energy efficiency of wireless sensor networks because data communication dissipates most of the energy resource of the networks. The above discussions imply a new family of protocols called chain-based protocols. In the protocols, all sensor nodes sense and gather data in an energy efficient manner by cooperating with their closest neighbors. The gathering process can be done until an elected node calculates the final data and sends the data to the base station. In our works, we have proposed two methods to optimize the lifetime of chain-based protocols using Integer Linear Programming (ILP) formulations. Also, a method to determine the bounds of the lifetime for any energy-efficient routing protocol is presented. Finally, simulation results verify the work in this chapter. Furthermore, previous researches assume that the base station position is randomly placed without optimization. In our works, a non convex optimization model has been developed for solving the base station location optimization problem.  相似文献   

16.
Energy efficiency in specific clustering protocols is highly desired in wireless sensor networks. Most existing clustering protocols periodically form clusters and statically assign cluster heads (CHs) and thus are not energy efficient. Every non‐CH node of these protocols sends data to the CH in every time slot of a frame allocated to them using the time division multiple access scheme, which is an energy‐consuming process. Moreover, these protocols do not provide any fault tolerance mechanism. Considering these limitations, we have proposed an efficient fault‐tolerant and energy‐efficient clustering protocol for a wireless sensor network. The performance of the proposed protocol was tested by means of a simulation and compared against the low energy adaptive clustering hierarchy and dynamic static clustering protocols. Simulation results showed that the fault‐tolerant and energy‐efficient clustering protocol has better performance than both the low energy adaptive clustering hierarchy and dynamic static clustering protocols in terms of energy efficiency and reliability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We study the potential of cognition and cooperation in Body Area Networks (BANs). On one hand, most BAN-based applications involve end-to-end transmission across heterogenous networks. Cognitive communication has been known to be an effective technology for addressing network heterogeneity. On the other hand, a BAN is normally required to provide reliable communications and operate in a very low power level to conserve energy and reduce the electromagnetic radiation impact on human body. Cooperative communication has been known to enhance the transmission reliability and maintain low transmission power. However, the joint cognitive and cooperative mechanism has not been investigated yet in the literature. In this paper, we propose a network architecture for cognitive and cooperative communications in BANs. An intelligent mobile device is introduced as either a cognitive gateway to interconnect heterogenous networks; or a cooperative relay node to achieve transmission diversity. Two cooperative transmission schemes, Energy-conserved Cooperative Transmission and Reliability-driven Cooperative Transmission, are presented for different applications that have distinct energy consumption or reliability requirement. Optimization problems are formulated to optimally allocate power in the cooperative transmission. Results indicate that cooperative transmission schemes can significantly decrease Bit Error Rate (BER) and reduce energy consumption, compared to the non-cooperative schemes. The BER gain is over one order in the high SNR region, while the energy consumption can save up to 50% in the low BER region.  相似文献   

18.
Sensor networks comprise of sensor nodes with limited battery power that are deployed at different geographical locations to monitor physical events. Information gathering is a typical but an important operation in many applications of wireless sensor networks (WSNs). It is necessary to operate the sensor network for longer period of time in an energy efficient manner for gathering information. One of the popular WSN protocol, named low energy adaptive clustering hierarchy (LEACH) and its variants, aim to prolong the network lifetime using energy efficient clustering approach. These protocols increase the network lifetime at the expense of reduced stability period (the time span before the first node dies). The reduction in stability period is because of the high energy variance of nodes. Stability period is an essential aspect to preserve coverage properties of the network. Higher is the stability period, more reliable is the network. Higher energy variance of nodes leads to load unbalancing among nodes and therefore lowers the stability period. Hence, it is perpetually attractive to design clustering algorithms that provides higher stability, lower energy variance and are energy efficient. In this paper to overcome the shortcomings of existing clustering protocols, a protocol named stable energy efficient clustering protocol is proposed. It balances the load among nodes using energy-aware heuristics and hence ensures higher stability period. The results demonstrate that the proposed protocol significantly outperforms LEACH and its variants in terms of energy variance and stability period.  相似文献   

19.
This article describes current and proposed protocols for mobility management for public land mobile networks (PLMNs), Mobile IP, wireless ATM, and satellite networks. The integration of these networks is discussed in the context of the next evolutionary step of wireless communications networks. First, a review is provided of location management algorithms for PCS implemented over a PLMN. The latest protocol changes for location registration and handoff are investigated for Mobile IP, followed by a discussion of proposed protocols for wireless ATM and satellite networks. Finally, an outline of open problems to be addressed by the next generation of wireless network service is discussed  相似文献   

20.
Wireless sensor networks become very attractive in the research community, due to their applications in diverse fields such as military tracking, civilian applications and medical research, and more generally in systems of systems. Routing is an important issue in wireless sensor networks due to the use of computationally and resource limited sensor nodes. Any routing protocol designed for use in wireless sensor networks should be energy efficient and should increase the network lifetime. In this paper, we propose an efficient and highly reliable query-driven routing protocol for wireless sensor networks. Our protocol provides the best theoretical energy aware routes to reach any node in the network and routes the request and reply packets with a lightweight overhead. We perform an overall evaluation of our protocol through simulations with comparison to other routing protocols. The results demonstrate the efficiency of our protocol in terms of energy consumption, load balancing of routes, and network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号