共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
改进的基于暗原色先验的图像去雾算法 总被引:2,自引:0,他引:2
针对暗原色先验估计透射率偏小,不适用于天空区域,致使复原图像色彩失真、亮度偏暗等问题,提出了一种基于天空区域分割的图像去雾算法。通过对天空和非天空区域的雾天图像进行有区分地复原,克服了因不满足先验规律而导致的失真问题,通过Gray World和White Patch假设对复原图像亮度进行校正处理,解决了图像偏暗的不足。此外,通过在天空区域估计大气光值,使求得的介质透射率更为精确,复原出的细节更加清晰。实验结果表明,该算法能有效解决天空区域失真问题,复原后的图像也具有较高的亮度和对比度。在时间复杂度不显著增加的条件下,能够达到良好的去雾效果。 相似文献
3.
目的为解决传统基于暗原色先验的单幅图像去雾算法实现效率低以及恢复雾化图像在天空、白云等明亮区域颜色失真的不足,提出一种改进算法。方法通过分块思想,完成透射率的空间自适应估计;通过判断大气光强度和暗通道差值绝对值大小来判断雾图中是否含有明亮区域。结果该算法不仅降低了传统算法的时间复杂度,而且弥补了传统算法在明亮区域透射率估计的不足。结论实验结果表明该改进算法可行、有效。 相似文献
4.
为了更好的消除图像中部分雾气,解决传统暗原色先验去雾算法的不足,提出了一种改进图像去雾算法.采用自适应取界获取暗原色区域块,对大气光强进行区间估计,改进了透射率修复方法,通过引入一种容错方法,使算法能更好地处理不满足暗原色先验的强光区域.实验结果表明,改进算法能有效去除图像的雾气和强光区域. 相似文献
5.
6.
7.
《计算机科学与探索》2017,(7):1131-1139
针对暗原色先验在明亮区域和天空区域透射率估计值偏小,致使复原图像亮度偏暗、颜色失真等问题,提出了一种新的图像去雾算法。在计算暗通道函数时,定义了一类平滑暗通道对3个颜色通道值的集中趋势进行描述,则该区域像素点的暗通道的值为其三原色通道的平均值,代替原来的最小值。使用均值滤波得到平滑的粗透射率,再通过引导滤波对透射率进行细化处理,进而估计全球大气光值,有效地去除了光晕效应及黑斑效应。将图像像素的亮度值与全球大气光值进行比较,对处在一定范围内大于或小于大气光值的像素点作为明亮区域的点,并对该点的透射率进行修正,使求得的透射率更为准确,复原后的图像细节更加清晰。实验结果表明,该算法能有效解决大面积明亮区域图像失真的问题,复原后的图像也具有较高的亮度和对比度。 相似文献
8.
目的 针对暗原色先验去雾算法出现的边缘残雾、天空色彩失真以及速度较慢问题,提出一种快速有效的图像去雾算法。方法 舍弃传统分块的思想,采用逐像素处理的方法估计透射率,并对估计值过低的透射率进行适当的增强。大气光采用效率更高的四叉树算法来求解。结果 有效地解决了边缘残雾和天空色彩失真问题,相比其他算法,去雾后的视觉效果有所提升。透射率和大气光的求解速度都得到一定程度的提高,去雾速度是暗原色先验去雾算法的近4倍。结论 实验结果表明,本文算法在保证良好去雾效果的前提下能大幅提升去雾的效率,节省去雾所花费的时间。对于大部分有雾图像,本文算法都能够达到较好的去雾效果,但在处理具有较大景深的图像时,远景部分的去雾效果欠佳。鉴于速度上的优势,本文算法适用于对实时性要求比较高的去雾场合。 相似文献
9.
针对雾天环境下图像清晰度降低以及色调偏移问题,提出一种基于暗原色先验的单幅图像快速去雾算法。首先使用灰度开运算代替最小值滤波得到粗略暗通道图,根据方差标记出雾天图像各个景深突变区的位置,并对突变区的暗原色值进行细化求解;其次求解出透射率的粗略估计并使用引导滤波来进行优化;然后使用一种自适应的容差机制对天空等明亮区域的透射率进行动态修正;最后利用大气散射模型复原出无雾图像。实验结果表明,与几种典型的图像去雾算法相比,所提算法具有较快的处理速度,同时得到的复原图像细节突出、色彩丰富。 相似文献
10.
为了实时地消除图像中的雾气,提出了一种基于暗原色先验理论的快速去雾算法.改进了透射率修复方法,显著地减少了算法的计算量;通过自适应调节透射率下限值和大气光成分值,扩大了去雾处理的适用范围;对复原的图像进行增强处理,改善了复原图像的整体视觉效果.实验结果表明,本文算法能有效地去除图像中的雾气,同时提高了算法的处理速度,有利于算法的实时实现. 相似文献
11.
针对暗原色先验去雾算法中雾霾图像明亮区域透射率估计过小,造成图像色彩失真的问题,提出一种新的基于比值重估透射率去雾算法。设定暗通道图与大气光强的差值阈值,利用预估透射率和全局透射率的比值重新估计透射率,从而改善明亮区域过小的透射率。实验结果表明,比值重估透射率去雾算法跟暗通道和容差机制去雾算法相比,该算法恢复的图像更接近于真实图像。 相似文献
12.
13.
针对基于暗原色先验理论的单幅图像去雾算法中,由于某些场景下的雾天图像存在大面积明亮区域(如天空、水面或者偏白色物体等)不满足暗原色先验假设,从而导致去雾处理效果不好的问题。基于暗原色先验理论,提出了一种改进的单幅图像去雾算法。首先利用统计截断的方法估计出大气光值;然后对暗通道图进行中值滤波得到粗略估计的透射率图,并对明亮区域的透射率图进行自适应校正处理;最后将这些参数带入大气散射成像模型完成去雾处理。实验结果显示,相较于原算法而言,所提算法可以准确地选取出天空区域的像素点对大气光进行估计,有效降低明亮区域的色彩失真。通过不同算法对不同室外场景下采集的雾天图像的去雾效果的对比可知,所提算法在对明亮区域的处理上更加合理,可以较好地处理一些带有光源的图像,恢复出的图像具有很好的细节保持,视觉效果显著提高。所提算法对含有大面积明亮区域的雾天图像具有很好的增强处理效果,可以为图像分割、语义检索、智能分析等图像处理工作提供有效的预处理手段,对于交通监管、视频监控、行车视频记录、视觉导航等研究领域具有重要的意义。 相似文献
14.
鉴于暗原色先验算法能复原不同雾浓度和场景深度的图像,而基于非局部算子概念的NL-CTV(Non-Local Color Total Variation)模型能较好地保持图像边缘和纹理等特征,融合暗原色先验与NL-CTV模型,提出了一种新型单幅彩色图像去雾模型。通过暗原色先验得到精确的大气光强度和大气传输函数,然后推导包含大气光强度和大气传输函数的非局部能量泛函,再通过引入辅助变量和Bregman迭代参数,为其设计相应的快速split Bregman算法来求解该模型。将该算法与He算法、暗原色先验和Retinex算法的实验结果进行分析比较,从而验证了该模型不论从视觉上,还是客观数据上都要优于其他两种算法。 相似文献
15.
16.
在雾霾天气条件下,由于大气粒子的散射作用导致拍摄的图像严重退化。针对这一问题,提出一种简单有效的单幅图像去雾算法。设计晕光估计算子检测出晕光区域,在暗原色先验条件下,根据晕光估计值获取区域自适应融合权值,进而在不同区域采用不同的加权方式融合基于单像素估算的透射率与基于块状区域的透射率以获取精确透射率,有效地消除了晕光效应;最后增加参数限制透射率过低,保护了天空区域。实验表明该算法复原的图像清晰自然,尤其是在前景与背景的边缘处及天空区域能够达到很好的去雾效果。 相似文献
17.
18.
目的 针对雾天图像高亮和雾浓区域中容易出现场景透射率值求取不准确,导致复原后的图像细节丢失、出现光晕现象、对比度和色彩难以满足人眼的视觉特性等问题,提出了一种融合引导滤波优化的色彩恢复多尺度视网膜算法(GF-MSRCR)和暗通道先验的图像去雾算法。方法 首先利用加权四叉树方法从最小通道图中快速搜索全局大气光值,再从图像增强角度应用GF-MSRCR算法初步估计场景透射率值,依据暗通道先验原理对最小通道图进行二次估测,根据两次求取结果按一定比例进行像素级图像融合,得到场景透射率估计值;利用变差函数修正估计值,经中值滤波进一步优化得到场景透射率的精确值,最后通过大气散射模型恢复雾天图像,调整对比度和恢复颜色后,得到了轮廓完整且细节清晰的无雾图像。结果 理论分析和实验结果表明,经本文算法去雾处理后的图像信息熵、对比度、平均梯度、结构相似性分别平均提升了7.87%、21.95%、47.73%和15.58%,同时运行时间缩短了53.22%,对近景、含小部分天空区域、含大片天空区域和含白色物体场景的多种类型雾天图像显示出较好的复原效果。结论 融合GF-MSRCR和暗通道先验的图像去雾算法能快速有效保留图像的细节信息、消除光晕,满足了人眼的视觉特性,具有一定的实用性以及普适性。 相似文献
19.
针对在暗原色先验理论下对天空区域的透射率估计总是过于偏小的问题,提出了一种基于暗原色图像的透射率纠正方法。以暗原色图像为参考,提取其天空等明亮区域的灰度归一化值替换生成新的透射率图。该方式提高了天空区域的透射率值,使其更接近于真实值。实验结果表明,对于各类雾化图像,在无需调整各参数值的情况下,该算法均能很好地避免天空区域出现色差失真问题;同时对于不含天空区域的图像,去雾仍然有效。此外,算法执行时无需进行复杂的天空区域识别及提取等操作。算法在实际去雾应用中实现了无参化,自动化程度高;对于分辨率为640?480彩色图像,速度可达1.5帧/s。 相似文献