共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
提出一种基于二维经验模式分解(Two-dimensional Empirical Mode Decomposition,2-D EMD)和独立成分分析(Independent Comment Analysis,ICA)相结合的掌纹识别新方法。利用2-D EMD自适应的时频局域化多尺度和ICA II表征数据的高阶统计特性来提取掌纹特征。首先,对预处理过的掌纹图像进行2-D EMD分解得到多层本征模函数(Intrinsic Mode Function,IMF);其次,利用基于PCA(Principal Component Analysis)降维处理的FastICA II算法提取IMF子图像集的掌纹特征基向量;最后,设计实验测试(2-D EMD+ICA II)的识别性能。实验结果表明,该方法能更有效地提取掌纹特征,与传统的ICA II相比,具有重构图像信噪比好、识别率高等优点。 相似文献
3.
通过主成分分析方法,给出了高速动车组车载数据的降维过程。基于第三方numpy库和机器学习sklearn库,分别通过Python代码实现了基于主成分分析的降维过程。通过对某高速动车组数据的降维分析,两种实现方式所得到的结果一致,都能够实现对高速动车组车载数据的降维。 相似文献
4.
赵桂儒 《数字社区&智能家居》2014,(8):1835-1837
PCA是一种常用的线性降维方法,但在实际应用中,当数据规模比较大时无法将样本数据全部读入内存进行分析计算。文章提出了一种针对较大规模数据应用PCA进行降维的方法,该方法在不借助Hadoop云计算平台的条件下解决了较大规模数据不能直接降维的问题,实际证明该方法具有很好的应用效果。 相似文献
5.
数据降维是提高入侵检测分类器的学习效率和检测速度的重要手段。针对目前入侵检测数据特征降维力度不够,提出了一种基于主成分分析的分类特征降维方法。该方法把样本集按数据类型分割成多个子集,分别对每个子集进行主成分分析来消除各子集间在降维时的相互影响,使得每个子集的降维达到最佳。实验结果表明采用分类主成分分析方法能够更有效地降低数据维数,提高了入侵检测分类器的学习速度和检测速度。 相似文献
6.
多元时间序列特征降维方法研究 总被引:2,自引:0,他引:2
针对常见的降维方法难以有效地保留多元时间序列主要特征的问题,分析了传统PCA方法在多元时间序列降维中的局限性;提出一种基于共同主成分分析的线性降维方法;把共同主成分与核技巧相结合,通过数学推导,将其拓展为基于共同核主成分分析的非线性降维方法;最后分析两种方法的降维有效性.与传统PCA方法相比,基于共同核主成分分析的降维方法可以表达变量间的非线性关系、能够选取合适的核函数和形状参数,因此降维手段更为灵活、对数据的适应性更强.实验结果表明,本文提出的降维方法能够更有效地对多元时间序列进行降维. 相似文献
7.
对于给定的多维事务数据对象的庞大数据集,有效选取显著特征因子是非常关键的,提取相关的主成分,替代原有的模式,能显著降低计算维数,使复杂问题简单化,达到良好的分类效果.结合一消费事务数据库,采用这种聚类降维技术,收到了较好的效果. 相似文献
8.
针对目前复杂环境下车牌汉字图像识别率较低,识别时间较长等问题,提出了一种基于伪Zernike矩和独立主成分分析(ICA)的改进概率神经网络(PNN)车牌汉字识别方法.该方法是将车牌汉字图像的伪Zernike矩通过独立主成分分析降维,再将降维后的特征输入所提出的一种基于代表点的改进概率神经网络中进行训练和识别,从而有效地实现车牌汉字的识别.将该方法应用于复杂环境下的车牌汉字图像识别实验,实验结果表明,该方法能有效地降低特征维数,减少识别时间,并能显著地提高车牌汉字的识别率. 相似文献
9.
10.
针对t-SNE方法不能很好地区分相互交叉的多个流形的问题,提出一种可视化降维方法.在t-SNE方法的基础上,在计算高维概率时考虑欧几里得度量和局部主成分分析以区分不同流形.然后可直接使用t-SNE的梯度求解方法得到降维结果.最后分别用3个人工生成的三维数据集和2个通用的机器学习数据集进行实验,并根据不同流形的区分度和流形内的邻域可信度2个指标对降维结果进行量化分析.结果表明,该方法在处理有交叉的多流形数据时的效果要明显优于原来的t-SNE方法,并能够较好地保持每个流形的邻域结构. 相似文献
11.
分析了数据流降维算法PCA和KPCA的原理和实现方法。针对在大型数据集上PCA线性降维无法有效实现降维且KPCA的降维效率差,提出了一种新的降维策略GKPCA算法。该算法将数据集先分组,对每一组执行KPCA,然后过滤重新组合数据集,再次应用KPCA算法,达到简化样本空间,降低了时间复杂度和空间复杂度。实验分析表明,GKPCA算法不仅能取得良好的降维效果,而且时间消耗少。 相似文献
12.
13.
PCA和KPCA都是基于欧氏距离提出的,这种距离对离群数据点比较敏感,而余弦角距离对离群数据更为鲁棒,在很多情况下具有更好的性能。充分利用余弦角距离的优势,提出两种新的特征抽取算法——基于余弦角距离的主成分分析(PCAC)和基于余弦角距离的核主成分分析(KPCAC)。在YALE人脸数据库与PolyU掌纹数据库上的实验表明,PCAC比PCA取得了更好的效果,KPCAC也表现出了很好的性能。 相似文献
14.
在基于图像的信息隐藏研究过程中,人们对信息隐藏性能的评价十分关注。提出了一种基于特征的JPEG图像信息隐藏隐蔽性的评价方法。此方法首先提取信息隐藏前后的JPEG图像的特征,对这些特征处理后进行作差得到特征改变量,然后将得到的多维特征改变量进行主成分分析法综合评价,从而实现对隐藏方法隐蔽性的评价。 相似文献
15.
ISOMAP是一种经典的非线性降维方法,能够有效地发现高维非线性数据集的低维几何结构,但该算法对奇异值和噪声非常敏感。利用具有鲁棒性的主成分分析(Robust PCA)来探测奇异点,并对奇异点进行适当处理以降低ISOMAP对其的敏感程度。所提出的算法直观且易于理解,实验结果也证明它具有较好的鲁棒性,而且在奇异点较多的情况下仍能保持数据的整体结构。 相似文献
16.
利用巴氏距离(Bhattacharyya Distance)和PCA(Principal Component Analysis)相结合进行人脸识别研究,提出了使用巴氏距离和PCA相合的算法对特征进行提取。当特征向量维数高时,首先对样本K-L(Karhunen-Loeve)变换进行降维,然后采用巴氏距离特征的迭代算法,得到最小错误率上界。基于ORL人脸数据库的实验表明该方法的识别性能优于LDA、HPCA、HLDA,采用文中的算法可以有效地提高识别率,减少巴氏距离特征计算时间,具有较强的实用性。 相似文献
17.
分析了传统的主成分分析方法的不足,论述了KPCA方法及其时间复杂度高的缺陷。在此基础上,提出基于核函数构造的协方差矩阵的主成分分析,相比 KPCA,该方法具有快的降维速度。实验结果显示:把该方法用于QAR数据具有良好的降维效果和高分类正确率。 相似文献
18.
19.
20.
针对传统PCA方法对离群点鲁棒性差的问题,提出了一种具有更高鲁棒性且自适应权值的PCA方法。在PCA方法的基础上建立了一个加权的重建误差和最小模型,通过引入信息熵来调节重建误差的权值;通过交替优化算法迭代求解模型。在Yale人脸库和UCI数据集上的实验表明该方法具有很好的鲁棒性和识别率。 相似文献