首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic properties of complex oxides with a layered structure Bi2GeO5, Bi2SiO5, Bi4Ti3O12, Bi2CaSrCu3O8+x and YBa2Cu3O6+δ in oxidative coupling of methane (OCM) have been studied. Bi2EO5 metastable compounds have been found to possess the high activity and C2-selectivity 53–70%. It has been assumed that the intergrowth boundaries for the Bi2EO5 decomposition products, on which active catalytic sites may be located, play a specific role on the catalytic performance of the oxides. Bi4Ti3O12 and Bi2CaSrCu3O8+x have close catalytic activity values but Bi2CaSrCu3O8+x as well as YBa2Cu3O6+δ are not selective in OCM reaction.  相似文献   

2.
以Bi(NO3)3·5H2O、Co(CH3COO)2·4H2O为原料,采用化学沉淀-水热法制备了Co3O4-Bi2O2CO3异质结构复合半导体光催化剂,并通过X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(DRS)、荧光光谱(PL)等手段对所合成的复合型催化剂进行了理化性能表征。研究结果表明:引入Co3O4没有改变Bi2O2CO3物相结构,但促进了Bi2O2CO3 对可见光的吸收能力,提高了Bi2O2CO3表面吸附氧物种的数量,抑制了光生载流子复合。复合光催化剂对罗丹明B(RhB)的光催化脱色实验显示引入Co3O4能够明显提高Bi2O2CO3催化剂的光催化脱色能力。尤其是Co3O4引入量为0.6%的Co3O4-Bi2O2CO3样品对罗丹明B染料的光催化脱色率可达到97%(模拟日光照射30min)。本文为复合型光催化剂制备提供了简单易行的技术路线,制备的新型半导体复合光催化剂Co3O4-Bi2O2CO3在环境净化方面表现出了较好的应用前景。  相似文献   

3.
Ce0.5Zr0.5O2, Ce0.5Zr0.2Mn0.3O2 and Ce0.5Mn0.5O2 were prepared by citric acid sol–gel method. The effect of manganese on the structural and redox properties of ceria-based mixed oxides was investigated by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analyses, temperature-programmed reduction and catalytic activity evaluation in the presence of excess O2. The results showed that some Mn cations could enter into the ceria lattice to form solid solutions. Mn3O4 appeared due to the instability of the mixed oxides with increment of the Mn doping ratio while another oxide Mn2O3 is detected in the physical mixture of ceria and manganese oxide. These Mn-doped mixed oxides, especially Ce0.5Mn0.5O2, presented better catalytic activities than Ce0.5Zr0.5O2 and even Pt-loaded catalyst for total oxidation of C3H8 and oxidative sorption of NO in the presence of excess oxygen. The oxidation ability of Mn and the strong interaction between Mn and Ce were suggested to promote the oxygen storage/transport capacity of the mixed oxides as well as reactive adsorption of nitric oxide and hydrocarbons.  相似文献   

4.
The Bi4Ti3O12/g-C3N4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C3N4 were stacked on the surface of regular Bi4Ti3O12 sheets. Comparing with pure Bi4Ti3O12 and g-C3N4, the Bi4Ti3O12/g-C3N4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C3N4 increasing to 10 wt%, the Bi4Ti3O12/g-C3N4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi4Ti3O12 or g-C3N4. Meanwhile, good stability and durability for the Bi4Ti3O12/g-C3N4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons (e-) and holes (h+). Furthermore, based on the results of active species trapping, photo-generated holes (h+) and superoxide radical (·O2-) could be the main radicals in reaction.  相似文献   

5.
Electrochemical reduction of carbon dioxide (CO2ER) into formate plays a crucial role in CO2 conversion and utilization. However, it still faces the problems of high overpotential and poor catalytic stability. Herein, we report a hybrid CO2ER electrocatalyst composed of layered bismuth sulfide (Bi2S3) and bismuth oxide (Bi2O3) supported on carrageenan derived carbon (Bi-CDC) prepared by a combined pyrolysis with hydrothermal treatment. In such 3D hybrid, layered Bi2O3 and Bi2S3 are uniformly grown on nanocarbon supports. Benefiting from strong synergistic effect between Bi2O3/Bi2S3 and nanocarbon, Bi-CDC-1:2 displays a high Faradic efficiency (FE) of >80% for formate production in the range of -0.9 V to -1.1 V with the maximum formate FE of 85.6% and current density of 14.1 mA·cm-2 at -1.0 V. Further, a positive onset potential of -0.5 V, a low Tafel slope of 112.38 mV·dec-1, and a slight performance loss during long-term CO2ER tests are observed on Bi-CDC-1:2. Experimental results shows that the better CO2ER performance of Bi-CDC-1:2 than that of Bi2O3 can be attributed to the strong interfacial interactions between nanocarbons and Bi2O3/Bi2S3. In situ ATR-FTIR measurements reveal that the rate-determining step in the CO2ER is the formation of HCOO* intermediated. Compared with carbon support, Bi-CDC-1:2 can promote the production of HCOO* intermediate and thus promoting CO2ER kinetic.  相似文献   

6.
The catalytic behaviour of multiphasic catalysts based on -bismuth pyrostannate, Bi2Sn2O7, was investigated in the selective oxidation of isobutene into methacrolein. When -Bi2Sn2O7 is mixed with MoO3, strong cooperation effects on the yield and selectivity in methacrolein occur. However, XRD analyses performed on samples after test revealed the formation of a low quantity of -bismuth molybdate, -Bi2Mo3O12, when the reaction temperature exceeded 673 K. Additional experiments were therefore carried out on the “Bi–Sn–Mo–O” catalysts in order to shed light on the role of Bi2Mo3O12 in the synergetic effects observed in the Bi2Sn2O7–MoO3 system. The experimental results are discussed in terms of several hypotheses. First, the intrinsic activity of Bi2Mo3 O12 is probably the simplest explanation for the synergetic effects, although experiments have shown that this phase present in a low quantity is only poorly active. Second, catalytic tests made on Bi2Sn2O7–Bi2Mo3O12 mechanical mixtures have evidenced a cooperation between these two ternary oxides, particularly when Bi2Sn2O7 was the major component of the mixture. Consequently, it is likely that a synergy between Bi2Sn2O7 and the in situ generated Bi2Mo3O12 might play a role in the synergy observed in the Bi2Sn2O7–MoO3 association. Third, as bismuth pyrostannate was previously shown to behave as an oxygen donor phase with respect to WO3, a remote control mechanism could therefore occur between Bi2Sn2O7 and MoO3, independently from the formation of -Bi2Mo3O12.  相似文献   

7.
The perovskite-type oxides La0.8Ce0.2Cu0.4Mn0.6O3 and La0.8Ce0.2Ag0.4Mn0.6O3 prepared by reverse microemulsion and sol–gel methods (denoted as R and S, respectively), have been investigated on their catalytic performance for the (NO + CO) reaction, and characterized by means of temperature-programmed desorption (TPD), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). XRD measurements proved the presence of the perovskite phase with a considerable amount of CeO2 phase and the formation of CeO2 phase was restrained with the reverse microemulsion method. TEM investigations revealed that the La0.8Ce0.2Cu0.4Mn0.6O3-R nanoparticles were uniform spheres in shape with diameters ranging from 40 to 50 nm, whereas an aggregation of particles was found for the La0.8Ce0.2Cu0.4Mn0.6O3-S catalyst. The activity of NO reduction with CO decreased in the order of La0.8Ce0.2Cu0.4Mn0.6O3-R > La0.8Ce0.2Cu0.4Mn0.6O3-S > La0.8Ce0.2Ag0.4Mn0.6O3-R > La0.8Ce0.2Ag0.4Mn0.6O3-S. In NO-TPD experiments, the principal desorbed species detected in the effluent was NO with a trace amount of O2 and N2O, suggesting that the non-dissociated adsorption of NO on the surface of the perovskite-type oxides was dominant. The XPS results revealed that Ce4+ and Cu+ was the predominant oxidation state for Ce and Cu components in La0.8Ce0.2Cu0.4Mn0.6O3 and La0.8Ce0.2Ag0.4Mn0.6O3 catalysts. The existence of Cu+ ions and its redox reaction (Cu+ ↔ Cu2+) would benefit the NO adsorption and reduction by CO.  相似文献   

8.
Pure phase of sillenite structure, Bi12TiO20, was directly synthesized using stoichiometric bismuth (III) nitrate pentahydrate and titanium glycolate by co-precipitation. The influence of pH on the structure of Bi12TiO20 was studied in the pH range of 3–10. The sillenite structure was characterized using XRD and FTIR. The photo-degradation reaction of 4-nitrophenol (4-NP) was used to study photocatalytic activity of Bi12TiO20 as a function of the preparation pH. The rate of decomposition was followed by UV-vis and TOC. The beginning concentration of 4-NP, 44 ppm, decreased to less than 1 ppm within 30 min for all prepared catalysts. It was found that the decomposition rate constant of Bi12TiO20 is six times higher than those of either TiO2 or Bi2O3 under the same conditions.  相似文献   

9.
Catalysts prepared as bulk VSb0.1Ox and supported V2O5/Al2O3, V2O5-Sb2O3/Al2O3 and Sb2O3/Al2O3 (containing 0.5, 1 or 2 theoretical monolayers of V2O5 or Sb2O3) were tested in the oxidative dehydrogenation of iso-butane at 550°C in i-C4H10:O2:He=20:10:70 gas mixture. Fresh and used catalysts were characterised by BET, XRD and XPS. Reactivity and thermochemistry of active oxygen taking part in the redox cycle with ethane and hydrogene were studied using in situ differential scanning calorimetry. Temperature-programmed desorption of O2 in He flow was also investigated and in situ DRIFT was applied to investigate surface species of the catalysts in flows of i-C4H10, O2 and i-C4H10/O2 mixture. Supported VSbyOx catalysts are more active and selective than bulk one. V-only supported catalysts display a high efficiency due to the high reactivity of VOX-species. In bulk catalyst, the surface is enriched with antimony. In supported samples, the surfaces V/Sb are close to the calculated ones. In the presence of antimony, the amount of active oxygen species and their reactivity in redox transformation is improved. The rates of vanadium reduction and reoxidation are also higher. Compared to V-only catalysts, supported V-Sb-catalysts display a lower coking activity and higher on-stream stability.  相似文献   

10.
The impact of oxygen permeability using an ionic oxygen conducting membrane reactor with surface catalyst was investigated for the oxidative coupling of methane to higher hydrocarbons. Dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO), Ba0.5Sr0.5Mn0.8Fe0.2O3−δ (BSMFO) and BaBi0.4Fe0.6O3 (BBFO) membrane disks with Pt/MgO catalysts were prepared by sol–gel deposition or wash-coating. It is demonstrated that the oxygen supply by permeation needs to fit to the consumption during the coupling reaction. In case of insufficient oxygen supply comparably poor conversions are observed while higher oxygen fluxes lead to increased methane conversions, especially in the presence of an efficient catalyst. Generally, increasing catalytic activity leads to lower C2 selectivity, especially for low oxygen permeation fluxes. The concept of a reactor employing dense catalytic membranes is viable, but the present study identifies further potential when the activity of the catalyst for the oxidative coupling is improved, leading to an overall enhanced performance of the membrane reactor.  相似文献   

11.
以Fe3O4纳米粒子和Bi2O2CO3为原料,采用溶剂热法制备Bi2O2CO3/Fe3O4磁性复合物,并通过对印染废水中染料的去除、剩余污泥厌氧消化过程中产甲烷潜力的影响两方面探讨其在环境污染治理中的应用。借助X射线衍射(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FTIR)和比表面积及孔径分析对Bi2O2CO3/Fe3O4复合物进行表征分析,SEM分析结果表明复合物表面较粗糙,BET结果显示复合物的比表面积为9.2294m2/g,Fe3O4的引入大幅度增加了Bi2O2CO3的比表面积,使其具有明显的介孔结构。一方面,以甲基橙(MO)为目标污染物,研究了不同实验条件下该材料对染料的去除效果,结果表明,最大吸附量可达14.373mg/g,且该吸附反应过程符合拟二级动力学和Langmuir吸附等温模型,趋于单分子层吸附;另一方面,评估了复合物对污泥厌氧消化产甲烷潜力的影响,结果表明,复合物的引入对污泥厌氧消化产甲烷过程有一定的促进作用,累积产甲烷量相比于对照组提高了10%。分别用一级动力学模型和修正Gompertz模型模拟厌氧消化过程,模拟结果显示一级动力学模型可以更好地描述引入Bi2O2CO3/Fe3O4磁性复合物的污泥厌氧消化过程。  相似文献   

12.
LiNi0.5Mn1.5O4 and LiMn2O4 with novel spinel morphology were synthesized by a hydrothermal and post-calcination process. The synthesized LiMn2O4 particles (5-10 μm) are uniform hexahedron, while the LiNi0.5Mn1.5O4 has spindle-like morphology with the long axis 10-15 μm, short axis 5-8 μm. Both LiMn2O4 and LiNi0.5Mn1.5O4 show high capacity when used as cathode materials for Li-ion batteries. In the voltage range of 2.5-5.5 V at room temperature, the LiNi0.5Mn1.5O4 has a high discharge capacity of 135.04 mA·h·g-1 at 20 mA·g-1, which is close to 147 mA·h·g-1 (theoretical capacity of LiNi0.5Mn1.5O4). The discharge capacity of LiMn2O4 is 131.08 mA·h·g-1 at 20 mA·g-1. Moreover, the LiNi0.5Mn1.5O4 shows a higher capacity retention (76%) compared to that of LiMn2O4 (61%) after 50 cycles. The morphology and structure of LiMn2O4 and LiNi0.5Mn1.5O4 are well kept even after cycling as demonstrated by SEM and XRD on cycled LiMn2O4 and LiNi0.5Mn1.5O4 electrodes.  相似文献   

13.
Pure Bi2Mo3O12, Bi2Mo2O9, Bi2MoO6, MoO3 and -Sb2O4 and their mechanical mixtures were investigated in the oxygen-assisted dehydration of 2-butanol at atmospheric pressure and at low temperature (220 and 250°C). All catalysts were characterized before and after the catalytic reaction by BET surface area measurement, Raman spectroscopy, XRD and XPS. A strong parallelism is confirmed with the results obtained in the selective oxidation of olefins. In the frame of the remote control concept, , β and γ-bismuth molybdates are able to play a dual role: donor of spillover oxygen (Oso) with respect to MoO3, and acceptor of Oso with respect to -Sb2O4. On one hand, this duality leads to mutual increase of activity when the bismuth molybdates are mixed together. In the presence of MoO3, the phase seems to be a stronger Oso donor than β and γ, and β has a donor strength between and γ. On the other hand, when the Bi molybdates are reacted in the presence of a big quantity of spillover oxygen, like in a mixture with -Sb2O4, they undergo a dramatic decrease of activity. The phenomenon originates from the full oxidation of the reduced Mo species to Mo6+ induced by Oso. In parallel with other reactions involving oxygen, this confirms that the real active and selective state of molybdenum-containing oxides is that slightly reduced possessing Mo5+.  相似文献   

14.
A Fe2O3−Bi2MoO6 heterojunction was synthesized via a hydrothermal method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy and ultra-violet−visible near-infrared spectrometry were performed to measure the structures, morphologies and optical properties of the as-prepared samples. The various factors that affected the piezocatalytic property of composite catalyst were studied. The highest rhodamine B degradation rate of 96.6% was attained on the 3% Fe2O3−Bi2MoO6 composite catalyst under 60 min of ultrasonic vibration. The good piezocatalytic activity was ascribed to the formation of a hierarchical flower-shaped microsphere structure and the heterostructure between Fe2O3 and Bi2MoO6, which effectively separated the ultrasound-induced electron–hole pairs and suppressed their recombination. Furthermore, a potential piezoelectric catalytic dye degradation mechanism of the Fe2O3−Bi2MoO6 catalyst was proposed based on the band potential and quenching effect of radical scavengers. The results demonstrated the potential of using Fe2O3−Bi2MoO6 nanocomposites in piezocatalytic applications.  相似文献   

15.
随着新能源汽车产业的蓬勃发展,对高能量密度动力电池的需求日益迫切。开发高电压正极材料及其适配性电解液,成为下一代高能量密度动力电池的主要研究方向。镍锰酸锂(LiNi0.5Mn1.5O4)材料以其高电压(4.7 V,vs.Li/Li +)、高能量密度(达650 W·h/kg)、资源丰富且价格低廉而受到广泛关注。然而,镍锰酸锂材料在长期的充放电循环过程中,锰从电极材料中溶解,破坏了电极材料的结构,导致电池性能恶化。介绍了镍锰酸锂正极材料及其适配性电解液研究最新进展。指出离子掺杂、表面包覆、复合方法是改善镍锰酸锂电化学性能的有效途径。同时,通过引入成膜添加剂、改变锂盐的种类及浓度、调整主溶剂的种类及比例等方法,可以提高电解液的耐高压性能,提高镍锰酸锂电极与电解液的界面稳定性,也是提升镍锰酸锂电池性能的重要方法。最后提出,适用于锂离子电池的5 V高电压电解液的研发相对滞后,其是制约高电压电池体系应用的主要问题。  相似文献   

16.
周兰  李旺  廖文俊 《无机盐工业》2021,53(11):17-24
尖晶石LiNi0.5Mn1.5O4正极材料因理论比容量和理论比能量高、工作电压高、资源丰富且价格低廉等优点而备受关注,但该材料因为高电压下电解液的分解及界面副反应导致循环性能和倍率性能不佳,制约着材料的推广应用。结合近几年的研究报道,介绍了LiNi0.5Mn1.5O4正极材料的结构及脱嵌机制、表/界面化学、改性方法,着重介绍了LiNi0.5Mn1.5O4材料的表面性质及不同组分之间的界面反应机制及对正极材料电化学性能的影响,指出LiNi0.5Mn1.5O4材料的晶面取向、颗粒形貌、表面元素分布、包覆及离子掺杂是改善镍锰酸锂材料电化学性能的有效途径。同时,通过溶剂替代、成膜添加剂的添加、改变锂盐的种类及浓度等方式,开发与之匹配的耐高压电解液也是提升镍锰酸锂电池性能的重要方法。最后,对LiNi0.5Mn1.5O4正极材料表面改性和电解液界面构筑方面进行了总结和展望,旨在为提升该材料性能的相关研究提供参考。  相似文献   

17.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

18.
A. Gil  P. Ruiz  B. Delmon 《Catalysis Today》1996,32(1-4):185-191
A bistability phenomenon has been observed in the oxidative dehydrogenation of 2-propanol over supported copper catalysts. Cu/Al2O3 and Cu/CeO2 have been prepared by room temperature adsorption of the copper amino complex on the supports. The comparison of the hysteresis observed when the partial pressure of oxygen is varied, indicates that there is an important effect of the support. This effect is explained by the variation in specific surface areas of the supports and in their reducibilities. The possible influence of a second phase (-Sb2O4, SnO2, Bi2O3 and NiO) added to the copper catalysts has also been studied.  相似文献   

19.
The effect of TiO2 on the grain growth of the ZnO–Bi2O3–CoO–MnO ceramic system prepared by chemical coprecipitation, was studied between 1150 and 1300 °C in air. Bi2O3 melts during firing, and then TiO2 dissolves into Bi2O3-rich liquid. TiO2 initially reacts with Bi2O3 to form Bi4Ti3O12. Above ≈1050 °C, Bi4Ti3O12 reacts with ZnO to form Zn2TiO4 spinel phase. The kinetic study of grain growth carried out using the expression GnGon=Ko·t·exp(−Q/RT) gave grain exponent (n) value as 6 and the apparent activation energy (Q) as 226.46 kJ/mol. 1.00 mol% TiO2 addition increased the grain growth exponent value from 6 to 7 and apparent activation energy with 1.00 mol% TiO2 addition was found to be 197.10 kJ/mol. The ZnO grain size gradually increases with increasing TiO2 content. Addition of TiO2 may increase the reactivity of the Bi2O3-rich liquid towards the ZnO grain, thus affecting the ZnO grain growth.  相似文献   

20.
Two new phases with ordered anion vacancies, La8Mn8O23 and La4Mn4O11, both having the general formula AnBnO3n·1, form during the reduction of perovskites of the type LaMnO3.07. The solid LaMnO3.07, obtained in air at 1100°C and subsequently reduced in flowing carbon monoxide at 350°C, gives the stoichiometric perovskite LaMnO3.00, whose reduction starts at 420°C and is completed at 450°C with formation of the phase La8Mn8O23. The second reduction stage starts at approximately 500°C and is completed at 520°C with formation of La4Mn4O11. The solids in the range of composition LaMnO3.00-La8Mn8O23 and La8Mn8O23-La4Mn4O11 would seem by X-ray examination to be biphasic but the behaviour during reduction is typical of a monophasic substance, the oxygen pressure of which at constant temperature progressively decreases as the composition tends to the limiting values La8Mn8O23 and La4Mn4O11. The crystal lattice of La8Mn8O23 can be considered as resulting from a sequence of seven octahedral sheets, MnO6, alternated with tetrahedral sheets, MnO4, and the crystal lattice of La4Mn4O11 from a sequence of three MnO6 sheets alternating with MnO4 sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号