首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

2.
ZrB2 (zirconium diboride)-based ceramics reinforced by 15vol.% SiC whiskers with high density were successfully prepared using MoSi2 as sintering aids. The effects of sintering condition and MoSi2 content on densification behavior, phase composition, and mechanical properties of SiCw/ZrB2 composites were studied. Nearly, fully dense materials (relative density >99%) were obtained by hot-pressing (HP) at 1700°C–1800°C in flow argon atmosphere. The grain size of ZrB2 phase in the samples sintered by HP at 1700°C–1800°C were very fine, with mean size below 5 μm. Mechanical properties (such as flexural strength, fracture toughness, and Vickers hardness) of the sintered samples were measured. The sample with 15vol.% MoSi2 addition sintered by HP at 1750°C displayed the best mechanical properties.  相似文献   

3.
Synthesis of composite materials with improved mechanical properties is considered. Pulse discharge sintering (PDS) technique was utilized for consolidation and synthesis of double phase Ti3SiC2/TiC composites from the initial powders TiH2/SiC/TiC. Scanning electron microscopy with energy-dispersive spectrometry (SEM with EDS) and X-ray diffractometry (XRD) were exploited for the analysis of the microstructure and composition of the sintered specimens. Mechanical tests showed high bending and compression strength and low Vickers hardness of Ti3SiC2-rich specimens. The reasons of this behaviour are in the features of the textured microstructure of Ti3SiC2 phase.  相似文献   

4.
SiC short fibers, with an average diameter of 13 μm, length of 300–1,000 μm and chopped from SiC continuous fibers, were surface modified by the semi-solid mechanical stirring method to produce a discrete coating of aluminum particles. Then the starting mixtures, which consist of SiC short composite fibers, aluminum powder less than 50 μm and α-SiC powder of an average diameter of 0.6 μm, were mechanically mixed in ethanol for about 3 h, dried at 80 °C in air, and hot pressed under 30 MPa pressure at 1,650, 1,750 and 1,850 °C with 1 h holding time to prepare SiCf/SiC composites. Volume fraction of SiC short fibers in the starting powder for SiCf/SiC composites was about 25 vol.%. The composites were characterized in terms of bulk density, phase composition, and mechanical properties at room temperature. In addition, the distribution of SiC short fibers in the matrix and the cracking pattern in the composites were examined by optical microscope. Fracture surface of the composites were performed by a scanning electron microscope (SEM). The effect of hot-pressing temperature on bulk density and mechanical properties was investigated. The results indicated that SiC short fibers were uniformly and randomly distributed in the matrix, bending strength and bulk density of the composites increased with increasing sintering temperature. The composite, hot-pressed at 1,850 °C, exhibited the maximum bulk density and bending strength at room temperature, about 3.01 g/cm3 and 366 MPa, respectively. SEM analyses showed that there were a few of fiber pullout on the fracture surface of samples sintered at 1,650 °C and 1,750 °C, which was mainly attributed to lower densities. But few of fiber pullout was observed on the fracture surface of sample sintered at 1,850 °C, the combined effects of high temperature and a long sintering time were considered as a source of too severe fiber degradation because of the large amount of oxygen in the fibers.  相似文献   

5.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

6.
Al–Li–SiCp composites were fabricated by a modified version of the conventional stir casting technique. Composites containing 8, 12 and 18 vol% SiC particles (40 μm) were fabricated. Hardness, tensile and compressive strengths of the unreinforced alloy and composites were determined. Ageing kinetics and effect of ageing on properties were also investigated. Additions of SiC particles increase the hardness, 0.2% proof stress, ultimate tensile strength and elastic modulus of Al–Li–8%SiC and Al–Li–12%SiC composites. In case of the composite reinforced with 18% SiC particles, although the elastic modulus increases the 0.2% proof stress and compressive strength were only marginally higher than the unreinforced alloy and lower than those of Al–Li–8%SiC and Al–Li–12%SiC composites. Clustering of SiC particles appears to be responsible for reduced the strength of Al–Li–18%SiC composite. The fracture surface of unreinforced 8090 Al-Li alloy (8090Al) shows a dimpled structure, indicating ductile mode of failure. Fracture in composites occurs by a mixed mode, giving rise to a bimodal distribution of dimples in the fracture surface. Cleavage of SiC particles was also observed in the fracture surface of composites. Composites show higher peak hardness and lower peak ageing time compared with unreinforced 8090Al alloy. Macro- and microhardness increase significantly after peak ageing. Ageing also results in considerable improvement in strength of the unreinforced 8090Al alloy and its composites. This is attributed to formation of δ (Al3Li) and S (Al2CuMg) precipitates during ageing. Per cent elongation, however, decreases due to age hardening. Al–Li–12%SiC, which shows marginally lower UTS and compressive strength than the Al–Li–8%SiC composite in extruded condition, exhibits higher strength than Al–Li–8%SiC in peak-aged condition.  相似文献   

7.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

8.
SiC (SCS-6TM) continuous fibre/SiC composites were fabricated by hot-pressing at 1700°C in vacuum using an Al sintering additive. Analytical transmission electron microscopy was used to investigate the microstructure of the composites. The room-temperature mechanical and high-temperature creep properties of the composites were investigated by four-point bending. The SiC powders used were sintered at a relatively low sintering temperature to high density (97% of theoretical density) with the addition of the Al sintering additive. It is believed that the Al additive is very efficient for the densification of SiC. The SiC fibres maintained their original form and microstructure during fabrication. The SiC matrix reacted with the outermost carbon sublayer in the fibre, forming a thin (1.8–4.8m) interfacial layer, which was composed of Al4C3, Si–Al–C, and Si–Al–O phases. The incorporation of SiC fibre into a dense SiC matrix significantly increased the room-temperature failure strain and improved the high-temperature creep properties. In addition, the incorporation of SiC fibre into a porous SiC matrix increased the room-temperature failure strain, but did not contribute to the high-temperature creep properties.  相似文献   

9.
Si3N4/TiN composites have been produced by hot pressing at temperatures from 1600 to 1800°C in a nitrogen atmosphere, using silicon nitride powders prepared by self-propagating high-temperature synthesis and surface-modified with titanium dioxide nanoparticles. We examined the effect of TiO2 content on the microstructure, phase composition, and mechanical strength of the ceramics. It is shown that titanium nitride can be formed by the reaction Si3N4 + TiO2 → TiN + NO + N2O + 3Si. The Si3N4/TiN composites containing 5–20% TiN have a low density, high porosity, and a bending strength of 60 MPa or lower. In Si3N4/TiN ceramics produced using calcium aluminates as sintering aids, the silicon nitride grains are densely packed, which ensures an increase in strength to 650 MPa.  相似文献   

10.
3Y-TZP/Al2O3 composites were pressureless sintered with the addition of TiO2-MnO2 and CaO-Al2O3-SiO2 glass. The densification, microstructure and mechanical properties of the composites were investigated. It was found that the composites could be densified at a temperature as low as 1400^C by liquid phase sintering. The majority of the grain sizes for both Al2O3 and ZrO2 were below 1 m because of the lower sintering temperature. A bending strength of 934 ± 28 MPa and fracture toughness of 7.82 ± 0.19 MPam1/2 were obtained for 3Y-TZP/Al2O3 (20 vol%) composite. Transformation toughening is considered the responsible toughening mechanism.  相似文献   

11.
High-density BAS/SiC composites were obtained from β-SiC starting powder by the spark plasma sintering technique. Various physical properties of the BAS/SiC composites were investigated in detail, such as densification, phase analysis, microstructures and mechanical properties. The results demonstrated that the relative density of the BAS/SiC composites reached over 99.4% at 1900 °C. The SiC grains were uniformly distributed in the continuous BAS matrix which is probably because of complete infiltration of the SiC particles in BAS liquid-phase formed during sintering. The pull-out of SiC particles, crack deflection and bridging were observed as the major toughening mechanism. The flexural strength and fracture toughness of the BAS/SiC composites sintered at 1900 °C were up to 560 MPa and 7.0 MPa·m1/2, respectively.  相似文献   

12.
This article reports experimental results on laser sintering of A356 aluminum alloy and A356/SiC composite powders. Effects of scan rate, sintering atmosphere, hatch spacing, and SiC volume fraction (up to 20%), and particle size (7 and 17 μm) on the densification were studied. The phase formation and microstructural development were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Laser sintering under argon atmosphere exhibited higher densification compared to nitrogen. A faster sintering kinetics was observed as the scan rate decreased. Except at a low SiC content (5 vol%), the composite powders exhibited lower densification kinetics. The densification was improved when finer SiC particles were utilized. Microstructural studies revealed directional solidification of aluminum melt to form columnar grains with inter-columnar silicon precipitates. In the presence of SiC particles, aluminum melt reacted with the ceramic particles to form Al4SiC4 plates.  相似文献   

13.
SiC-AlN composites have been successfully pressureless sintered by using commercial SiC and AlN powders with the optimum amount of sintering aid. The important parameters during pressureless sintering, including the amount and type of sintering aids, sintering temperature, sintering period and packing powder have been studied. Yttria was found to be a better sintering aid than alumina or calcia. The yttria sintering aid reacts with AlN and SiC powders and forms a Y-Al-Si-O-N grain-boundary phase to assist densification during pressureless sintering. With 2 wt% yttria, SiC-AlN composites can be pressureless sintered to high density at 2050–2100 °C for 2 h under the firing conditions where alpha-pp packing powder is used during firing. The microstructure and phases of the composites were characterized by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffractometry.  相似文献   

14.
Copper matrix composites were fabricated through mixing fixed amount of reduced graphene oxide and the different amounts of titanium. The dried copper/titanium/reduced graphene oxide mixture powders were firstly obtained by the wet‐mixing process, and then the spark plasma sintering process realized their faster densification. In the as‐sintered bulk composites, the layered reduced graphene oxide network, uniform titanium particles and copper‐titanium solid solution are observed in copper matrix. Investigations on mechanical properties show that the as‐prepared bulk composites exhibit the hardness and compressive yield strength compared with single reduced graphene oxide added composites. Increased titanium addition resulted into higher hardness and strength. The relevant formation and failure mechanisms of the composites and their influence on mechanical properties were discussed.  相似文献   

15.
碳化硅陶瓷因自身优良的物理化学性能而具有广泛的应用前景.碳化硅的化学键结合特性决定了其难以烧结成型,因此如何制备高质量碳化硅陶瓷是领域内的难点之一.本研究以三元稀土碳化物Dy3Si2C2作为新型SiC陶瓷的烧结助剂,依据Dy-Si-C体系的高温相转变原位促进碳化硅的烧结致密化.采用放电等离子烧结技术,利用金属Dy与Si...  相似文献   

16.
17.
对微波辅助法制备的钼铜复合粉末进行压制烧结,研究其致密化行为及复合材料性能。结果表明:烧结温度是控制钼铜复合材料成分、微观组织及综合性能的关键因素。1100℃下烧结的钼铜复合材料Cu含量最接近设计含量,过高的烧结温度将引起铜的损耗。在较低的烧结温度下(≤1100℃),复合材料的力学性能和物理性能随温度的升高而升高,但是过高的烧结温度(1200℃)会引起铜相的大量损失及颗粒异常长大,从而导致复合材料密度、硬度、导电率及导热率的降低。通过优化实验参数,1100℃下的复合材料具有理想的微观结构,铜相损失较少,复合材料成分接近设计成分,钼铜两相分散较为均匀,力学性能及物理性能优异,复合材料的密度、硬度、抗弯强度、电导率及热导率分别为9.79g/cm^3,229.1HV,837.76MPa,24.97×10~6S·m-1和176.57W·m-1·K-1。  相似文献   

18.
Ductile-phase reinforcement of hydroxyapatite (HA) was achieved by addition of silver particulates (5–30 vol %) in HA powder and subsequent sintering of HA–Ag powder compacts. A composite made by sintering 10 vol % Ag and the balance HA at 1200 °C for 1 h in air had flexural strength of 75±7 MPa, which was almost double that of pure HA sintered under an identical condition. The density of HA-10 vol % Ag composite was 90±2% of the theoretical density (as calculated from the rule of mixture) and was lower than that (98.7±0.4%) of pure HA sintered at a similar condition. The X-ray diffraction pattern of the composite did not indicate any decomposition of HA or any reaction between HA and Ag. Ag in the composite melted during sintering, but, due to poor wetting, did not spread in between HA particles. The addition of Ag reduced densification and grain growth during sintering of HA–Ag composites. Indentation cracks in the composites went around Ag inclusions and often stopped at Ag inclusions. The increase in the flexural strength of the composites was thought to be due to crack-bridging and crack-arrest by silver particles.  相似文献   

19.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

20.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号