首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高语音端点检测效果,将小波分析和神经网络相融合,提出一种基于小波神经网络的语音端点检测算法(WA-PCA-RBF)。利用小波分析提取语音信号的特征向量,采用主成分分析法选择语音信号特征,消除冗余特征,将选择特征向量作为RBF神经网络输入,通过遗传算法优化RBF神经网络参数建立语音端检测模型。结果表明,相对于传统语音端点检测算法,WA-PCA-RBF提高了语音端点检测正确率,具有更好的适应性和鲁棒性,可满足实际系统需求。  相似文献   

2.
In the present study, biomedical based application was developed to classify the data belongs to normal and abnormal samples generated by Doppler ultrasound. This study consists of raw data obtaining and pre-processing, feature extraction and classification steps. In the pre-processing step, a high-pass filter, white de-noising and normalization were used. During the feature extraction step, wavelet entropy was applied by wavelet transform and short time fourier transform. Obtained features were classified by fuzzy discrete hidden Markov model (FDHMM). For this purpose, a FDHMM that consists of Sugeno and Choquet integrals and λ fuzzy measurement was defined to eliminate statistical dependence assumptions to increase the performance and to have better flexibility. Moreover, Sugeno integral was used together with triangular norms that are mentioned frequently in the literature in order to increase the performance. Experimental results show that recognition rate obtained by Sugeno fuzzy integral with triangular norm is more successful than recognition rates obtained by standard discrete HMM (DHMM) and Choquet integral based FDHMM. In addition to this, it is shown in this study that the performance of the Sugeno integral based method is better than the performances of artificial neural network (ANN) and HMM based classification systems that were used in previous studies of the authors.  相似文献   

3.
脑-机接口BCI是一种实现人脑和外部设备通信的新兴技术。基于时频特性进行特征提取的传统方法无法体现EEG信号的非线性特征。为了进一步提高分类的准确率,首先采用小波阈值降噪的预处理方法提高了EEG信号的信噪比。然后结合非线性动力学的样本熵参数,对3种想象运动的脑电信号进行特征提取,保留了脑电信号的非线性特征。其中,运动想象MI脑电信号的研究一直都是BCI这一高速发展领域的重点目标。还研究了支持向量机、LVQ神经网络和BP神经网络3种分类器。通过实验结果对比发现,BP神经网络具有较高的识别率,更适用于脑电信号的分类识别。  相似文献   

4.
针对当前通信信号的制式识别算法在低信噪比情况下识别不准确的问题,提出一种新的小波特征与改进的深度神经网络结合(WL-DNN)的识别算法。该算法将生成的10种{2ASK、4ASK、2PSK、4PSK、2FSK、4FSK、OFDM、16QAM、AM、FM}含有高斯白噪声的通信信号,用小波分解重构算法提取出一类新的小波特征参数。本文测试了含有多层隐含层的改进BP神经网络作为分类器,利用弹性反向传播算法训练神经网络的参数,确定神经网络的最优超参数。仿真结果表明:在信噪比低至0 dB的情况下,单个调制信号最低识别率超过95%,平均识别率超过98%,大幅提高了制式识别在低信噪比下的识别率,由此表明了该算法的有效性和正确性。  相似文献   

5.
Abstract: Application of the Doppler ultrasound technique in the diagnosis of heart diseases has been increasing in the last decade since it is non‐invasive, practicable and reliable. In this study, a new approach based on the discrete hidden Markov model (DHMM) is proposed for the diagnosis of heart valve disorders. For the calculation of hidden Markov model (HMM) parameters according to the maximum likelihood approach, HMM parameters belonging to each class are calculated by using training samples that only belong to their own classes. In order to calculate the parameters of DHMMs, not only training samples of the related class but also training samples of other classes are included in the calculation. Therefore HMM parameters that reflect a class's characteristics are more represented than other class parameters. For this aim, the approach was to use a hybrid method by adapting the Rocchio algorithm. The proposed system was used in the classification of the Doppler signals obtained from aortic and mitral heart valves of 215 subjects. The performance of this classification approach was compared with the classification performances in previous studies which used the same data set and the efficiency of the new approach was tested. The total classification accuracy of the proposed approach (95.12%) is higher than the total accuracy rate of standard DHMM (94.31%), continuous HMM (93.5%) and support vector machine (92.67%) classifiers employed in our previous studies and comparable with the performance levels of classifications using artificial neural networks (95.12%) and fuzzy‐C‐means/CHMM (95.12%).  相似文献   

6.
针对传统神经网络收敛速度慢,收敛精度低,以及用于模式识别泛化能力差的问题。提出了将量子神经网络与小波理论相结合的量子小波神经网络模型。该模型隐层量子神经元采用小波基函数的线性叠加作为激励函数,称之为多层小波激励函数,这样隐层神经元既能表示更多的状态和量级,又能提高网络收敛精度和速度。给出了网络学习算法。并以之在漏钢预报波形识别中的应用验证了该模型和学习算法的有效性。  相似文献   

7.
基于小波与神经网络的GPS周跳探测与修复*   总被引:5,自引:0,他引:5  
为了得到精密的GPS定位结果,必须对载波相位中的周跳进行有效地探测与修复.分析了周跳发生的原因及其特性,提出了一种周跳探测与修复的二步法.首先对信号进行小波多分辨率分析,根据小波系数的模极大值点的位置准确探测出周跳发生的历元;然后对周跳两侧的信号采用神经网络进行分别预测,通过对比预测值的不同来确定出周跳的大小,从而实现了周跳的修复.文末,利用实测的相位数据,验证了方法的可行性与有效性.  相似文献   

8.
Logging-While-Drilling (LWD) is a new well logging technology of petroleum engineering in recent years. Limited by data transmission technology, a large of logging data must be stored in downhole firstly, but the space of the downhole memory is restricted, so an efficient data compression algorithm is demanded imminently. A compression algorithm based on wavelet neural network for acoustic LWD waveform data is presented. The experiment shows that the algorithm has fast network convergent velocity and high compression ratio. The algorithm can meet the need of the real-time acoustic logging data processing.  相似文献   

9.
We investigate the application of neural networks for the detection of Coronary Heart Disease (CHD). We have used a Neural Network (NN) on data from a self- applied questionnaire to implement a decision system designed to seek out high risk individuals in a large population. A Multi- Layered Perceptron (MLP) was trained with risk factors to distinguish CHD. We also describe a modification to the architecture of the neural network in which an extra layer of neurons is added at the input. We present possible interpretations of the weights of these neurons, and show how they can be used as a selection criteria for which questions to use as inputs. The technique is compared against other statistical methods. We go on to demonstrate the system's capability for detecting both the symptomatic and asymptomatic patient.  相似文献   

10.
This paper presents a new approach for automated parts recognition. It is based on the use of the signature and autocorrelation functions for feature extraction and a neural network for the analysis of recognition. The signature represents the shapes of boundaries detected in digitized binary images of the parts. The autocorrelation coefficients computed from the signature are invariant to transformations such as scaling, translation and rotation of the parts. These unique extracted features are fed to the neural network. A multilayer perceptron with two hidden layers, along with a backpropagation learning algorithm, is used as a pattern classifier. In addition, the position information of the part for a robot with a vision system is described to permit grasping and pick-up. Experimental results indicate that the proposed approach is appropriate for the accurate and fast recognition and inspection of parts in automated manufacturing systems.  相似文献   

11.
目前大多数声音识别系统在无噪声环境下可以达到很高的识别率,但是在噪声环境下,识别率急剧下降。针对这个问题,提出一种基于小波矩和BP网络的声音识别方法。根据声音信号生成声谱图;通过小波矩对声谱图进行特征提取,选取有代表性意义的特征参数;根据选取的参数进行BP网络分类识别,从而识别声音的种类。实验结果表明,该方法在不同噪声种类以及不同信噪比的噪声环境下仍然具有较好的识别效果,克服了低信噪比下识别率低的缺陷。  相似文献   

12.
将图像进行预处理并提取图像的特征,计算出图像的不变矩,利用ART-2神经网络完成了对图像的模式识别。通过实验证明ART-2神经网络具有较高的识别率,并很好地解决了神经网络在模式识别中面对识别对象出现新模式时,网络的可塑性与稳定性的矛盾。  相似文献   

13.
在小波分析和过程神经网络理论的基础上,提出了连续小波过程神经网络模型,其隐层为过程神经元,隐层激活函数采用小波函数.该网络结合了小波变换良好的时一频局域化性质及过程神经网络可以处理连续输入信号的特点,因而学习能力强,精度高.给出了小波过程神经网络学习算法,并以航空发动机滑油系统状态监测为例,分别利用传统BP网络和小波过程神经网络进行预测.结果表明,小波过程神经网络收敛速度快,精度高,优于BP网络的预测能力,同时也为航空发动机滑油系统状态监测问题提供了一种有效的方法.  相似文献   

14.
小波神经网络在飞控系统辨识中的应用研究   总被引:1,自引:0,他引:1  
选择以sigmoid函数为基础的小波基波函数构造了一个小波神经网络,利用小波网络对复杂的飞控系统对象进行在线辨识研究,仿真结果表明小波神经网络基本满足某型飞机飞控系统在线辨识的要求。  相似文献   

15.
为了提高钢筋的计数准确率和效率,综合运用图像处理技术和神经网络技术,实现对钢筋的识别和计数.对获取的钢筋原始图像进行数字图像处理,得到感兴趣的部分即钢筋的轮廓;计算单根钢筋轮廓的宽度、高度、面积和打捆钢筋瞧总面积4个特征量;将这4个特征量作为神经网络的输入,训练网络识别钢筋并计数.仿真实验验证了这种方法的可行性和有效性.  相似文献   

16.
为提高抵抗旋转和剪切攻击等的能力,提出了一种基于小波矩特征调制和神经网检测的图像水印算法。利用水印信息调制载体的低阶小波矩特征,经过二值图像中附加的模板训练的神经网络几乎能够完全恢复嵌入到图像中的水印数据。实验表明该算法具有较好的鲁棒性,能有效地抵抗剪切,旋转攻击。算法利用具有旋转不变的小波矩,提高了抵抗攻击的能力。  相似文献   

17.
小波神经网络在模拟电路故障诊断中的应用   总被引:1,自引:0,他引:1  
介绍了模拟电路故障诊断的神经网络方法及小波神经网络结构和原理,以一带通滤波器为例,提出了一种基于输出灵敏度分析,利用多频测试生成故障特征向量训练小波神经网络进行故障诊断的方法,仿真结果表明小波神经网作为故障分类器具有收敛速度快,诊断准确等特点。  相似文献   

18.
基于遗传算法和小波神经网络的语音识别研究   总被引:1,自引:0,他引:1  
小波神经网络算法(WNN)易陷入局部极小,收敛速度慢,全局搜索能力弱,而遗传算法(GA)具有高度并行、随机、自适应搜索性能和全局寻优的特点。因此,将遗传算法和小波神经网络结合起来形成一种训练神经网络的混合算法——GA-WNN算法。仿真实验结果表明,该算法有效地缩短了识别时间,提高了网络训练速度和语音的识别率。  相似文献   

19.
曹莉  赵德安  孙月平  刘建跃 《微计算机信息》2007,23(19):311-312,302
由于传统的心音听诊就是凭医生的经验用听觉分析心音信号,不能满足医学上所要求的高精确度性能而且听诊技能要花多年时间才能掌握,针对这些弊端本文提出了一种新的心音诊断方法.它对电子听诊器录制的心音数据,经过去噪预处理后用小波变换进行分析并提取特征值,再将选取的特征值输入到前馈型神经网络进行训练和识别.实验中我们用节点数分别为9,5,5的BP神经网络能成功识别出主动脉关闭不全,主动脉狭窄,二尖瓣关闭不全,二尖瓣狭窄,和正常心音五类心音,能为相应心脏疾病的诊断提供有力的依据,为临床应用提供有效的分析手段.  相似文献   

20.
针对液压电磁式驱动制动系统中卡缸故障的非平稳时变信号特征,提出了用小波包能量法提取故障特征向量,采用神经网络进行安全监测的方法.通过在某一提升机盘式制动器中的应用表明:该方法能准确地监测制动系统是否发生卡缸故障,有效地避免了事故的发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号