共查询到20条相似文献,搜索用时 15 毫秒
1.
脑-机接口BCI是一种实现人脑和外部设备通信的新兴技术。基于时频特性进行特征提取的传统方法无法体现EEG信号的非线性特征。为了进一步提高分类的准确率,首先采用小波阈值降噪的预处理方法提高了EEG信号的信噪比。然后结合非线性动力学的样本熵参数,对3种想象运动的脑电信号进行特征提取,保留了脑电信号的非线性特征。其中,运动想象MI脑电信号的研究一直都是BCI这一高速发展领域的重点目标。还研究了支持向量机、LVQ神经网络和BP神经网络3种分类器。通过实验结果对比发现,BP神经网络具有较高的识别率,更适用于脑电信号的分类识别。 相似文献
2.
人脸识别是模式识别研究领域的重要课题,具有广阔的应用前景。本文提出了基于模糊神经网络的人脸识别方法。首先用最优鉴别分析方法提取人脸的最优鉴别矢量集,构成特征空间,然后在特征空间中设计模糊神经网络分类器。在ORL人脸图象库上的实验结果表明了该方法的有效性。 相似文献
3.
特征提取是虹膜识别的关键技术;由于虹膜图像具有丰富的纹理,提出了基于小波包分解的虹膜识别算法。小波包分解不仅包含了图像的低频部分而且还保留了高频部分,它能够有效地提取虹膜纹理特征,并按hamming距离对虹膜进行匹配。实验结果表明,该算法具有良好的鲁棒性。 相似文献
4.
字符识别是模式识别的一个重要分支,其关键是特征向量的选择与提取。小波分解和分形在图像处理方面有着广泛的应用,在结合二者特点的基础上提出了一种新的基于轮廓追踪的字符识别特征选取方法。即对于一个输入的字符图像经预处理提取其轮廓,并由轮廓追踪获得边缘点坐标序列,实现了从二维图像数据到一维数据的转化,对得到的一维曲线进行小波分解,计算少数几个分解得到的曲线的分形维数,以它们构成特征向量。并对有关字符做了实验,其效果是令人满意的。 相似文献
5.
6.
心音信号识别对心血管疾病的诊断具有重要意义,为了提高心音信号的识别性能,提出一种基于支持向量机的心音信号自动识别方法。首先采用小波分析对心音信号进行降噪预处理,然后提取心音信号的Mel频率倒谱系数作为心音信号特征,最后采用支持向量机建立心音信号分类器,对采集心音信号数据的识别性能进行验证。实验结果表明,本文方法的心音信号平均识别率高达93%以上,可以准确识别正常和各种异常的心音信号。
相似文献
7.
Fault Diagnosis Using Wavelet Neural Networks 总被引:4,自引:0,他引:4
Wavelet neural networks are a class of neural networks consisting of wavelets. This paper presents a novel universal tool for fault diagnosis and algorithms for wavelet neural network construction are proposed. Using the model of wavelet neural networks, we can not only extract the features of system but also predict the development of the fault. 相似文献
8.
The purpose of this article is to show the effectiveness of a positive linear decomposition in the derivation of robust features of high-dimensional dynamic measurements, in order to achieve effective pattern recognition and classification. The method begins with the singular value decomposition, projecting a matrix of dynamic process measurements (taken at uniform intervals over some time-window) onto a low-dimensional subspace. A convex cone, defined by the non-negativity of measurements, is then created. For normalization purposes a polygon, whose corners specify the feature vectors of the data, is formed by intersecting the cone with a plane. This polygon is reduced to a triangle with only the three most representative corners. The net effect of these steps is that the original orthogonal basis of the subspace (consisting of the first three principal components) is replaced by a new, non-orthogonal basis, which offers the advantage of containing only positive measurements and requiring only positive superposition of basis vectors to span the physically meaningful portion of the subspace. One of the vectors in this basis is selected as the feature vector for pattern recognition; a spanning tree created from the feature vectors classifies the patterns. The feature vectors from the new basis are much more robust with respect to changes in the width of the time window, and classification was possible even with feature vectors of differing time windows. 相似文献
9.
10.
Sathya Ramasamy Ananthi Selvarajan Vaidehi Kaliyaperumal Prasanth Aruchamy 《Concurrency and Computation》2023,35(8):e7615
In today's world, identifying the owner and proprietor of a vehicle that violates driving rules or does any unintentional work on the street is a challenging task. Inspection of each driver's license number takes a long time for a highway police officer. To overcome this, many researchers have introduced an automated number plate recognition approach which is usually a computer vision-based technique to identify the vehicle's registration plate. However, the existing recognition approaches are lagged to extract the influential features which degrade the detection accuracy and increase the misclassification errors. In this article, a novel automated number plate recognition methodology has been proposed to identify the number plates accurately with minimal error rates. Primary, a new pretrained location-dependent ultra convolutional neural network (LUCNN) is employed to learn the influential features from the input images. These obtained features are then fed into hybrid single-shot fully convolutional detectors with a support vector machine (SSVM) classifier to separate the vehicle's city, model, and number from the registration location. At varied automobile distances, the proposed LUCNN + SSVM model is able to retrieve the number plate regions in the picture acquired from its back end. The performance results manifest that the proposed LUCNN + SSVM model attains a better accuracy of 98.75% and a lesser error range of 1.25% than the existing recognition models. 相似文献
11.
This paper presents a new approach for automated parts recognition. It is based on the use of the signature and autocorrelation functions for feature extraction and a neural network for the analysis of recognition. The signature represents the shapes of boundaries detected in digitized binary images of the parts. The autocorrelation coefficients computed from the signature are invariant to transformations such as scaling, translation and rotation of the parts. These unique extracted features are fed to the neural network. A multilayer perceptron with two hidden layers, along with a backpropagation learning algorithm, is used as a pattern classifier. In addition, the position information of the part for a robot with a vision system is described to permit grasping and pick-up. Experimental results indicate that the proposed approach is appropriate for the accurate and fast recognition and inspection of parts in automated manufacturing systems. 相似文献
12.
矢量量化与神经网络相结合的说话人识别系统 总被引:2,自引:0,他引:2
介绍了说话人识别系统的基本概念,在分析了传统VQ模型与神经网络模型的基础上,提出了一种VQ与神经网络相结合的说话人识别系统模型。通过提取出的特征参数(MFFC),建立系统模型,实验证明了该模型性能随着时间的变化有较好的稳定性。 相似文献
13.
基于小波变换和改进的奇异值分解的人脸识别 总被引:1,自引:0,他引:1
使用基于肤色的检测方法分割出人脸并进行归一化,利用小波变换压缩降维以减少计算量。针对原有奇异值分解的不足,将图像矩阵进行投影,并将整体与三组局部图片的奇异值结合进行改进,利用BP神经网络进行分类识别,进行人脸识别仿真实验。结果表明,所提出的基于小波变换和改进的奇异值分解特征提取方法是一种实用、可行的方法。 相似文献
14.
基于小波特征的快速核主分量分析技术 总被引:2,自引:0,他引:2
论文提出了基于小波特征的核主分量分析技术,即在进行非线性映射之前,首先利用小波变换对原始输入训练样本进行预处理,获取低频平滑、水平细节和垂直细节等三个子图的小波特征,然后在频域上,对它们分别进行核主分量分析(KPCA),对最终获得的3组特征向量设计了一种特征融合的方法。在ORL标准人脸库上的试验结果表明所提方法不仅在识别性能上优于现有的核主分量分析方法,而且,特征抽取速度提高了11倍。 相似文献
15.
Harun Uuz Ahmet Arslan Rdvan Saraolu brahim Türkolu 《Expert systems with applications》2008,34(4):2799-2811
In the present study, biomedical based application was developed to classify the data belongs to normal and abnormal samples generated by Doppler ultrasound. This study consists of raw data obtaining and pre-processing, feature extraction and classification steps. In the pre-processing step, a high-pass filter, white de-noising and normalization were used. During the feature extraction step, wavelet entropy was applied by wavelet transform and short time fourier transform. Obtained features were classified by fuzzy discrete hidden Markov model (FDHMM). For this purpose, a FDHMM that consists of Sugeno and Choquet integrals and λ fuzzy measurement was defined to eliminate statistical dependence assumptions to increase the performance and to have better flexibility. Moreover, Sugeno integral was used together with triangular norms that are mentioned frequently in the literature in order to increase the performance. Experimental results show that recognition rate obtained by Sugeno fuzzy integral with triangular norm is more successful than recognition rates obtained by standard discrete HMM (DHMM) and Choquet integral based FDHMM. In addition to this, it is shown in this study that the performance of the Sugeno integral based method is better than the performances of artificial neural network (ANN) and HMM based classification systems that were used in previous studies of the authors. 相似文献
16.
神经网络是一种普遍使用的分类方法。当类别数目较大时,神经网络结构复杂、训练时间激增、分类性能下降。针对这些问题,基于N分类问题的两种类方法和树型分类器结构,对两分类子网络集进行排序,中给出了一种大类别分类的神经网络阵一结构和快速搜索方法并重点分析了网络阵列的分类性能。理论分析表明,使用网络阵列方法可降低平均分类错误率。该方法还使得网络结构简单灵活,易于扩充,网络的训练时间缩短,仿真实验表明,该方 相似文献
17.
18.
基于小波分析和概率神经网络的心音诊断研究 总被引:2,自引:0,他引:2
心音对大多数心血管疾病具有极高的临床诊断价值,对心音信号进行分析有助于临床上对心脏疾病的诊断。为了利用计算机智能分析心音信号,提出利用多尺度小波分解消除信号中的噪声,从各频带提取特征值,用概率神经网络(PNN)来进行心音信号的自动分析诊断。用Matlab仿真的方法测试了5种不同类型心音信号的分类情况,结果表明该方法可行。 相似文献
19.
基于神经网络及多层次信息融合的手写体数字识别 总被引:3,自引:1,他引:3
以信息融合技术为基础,提出了一种新的基于神经网络及多层次信息融合的手写体数字识别方法。该方法通过提取字符图像不同机制的4个互补特征,组合形成6个融合特征,利用优化的BP神经网络算法,对多融合特征进行识别分类,然后用神经网络对6个识别结果进行融合决策.实验结果表明,新的融合识别方法能有效提高识别率,并具有较高的系统可靠性。 相似文献
20.
介绍了一种基于线性最小平方映射的目标分类识别新方法。该方法先用自相关函数抽取目标图象特征,再用线性最小平方映射技术(LLSMT)将所得特征向量映射到决策空间,在决策空间中用投影方法完成目标分类识别。作者用三类小汽车的二维二值图象进行实验,得到了比传统的K近邻、聚类等方法更好的分类结果。 相似文献