共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Ezaami E. Sellami-Jmal W. Cheikhrouhou-Koubaa M. Koubaa A. Cheikhrouhou 《Journal of Superconductivity and Novel Magnetism》2017,30(4):911-916
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition. 相似文献
2.
Mazhar Iqbal Muhammad Nasir Khan Ayaz Arif Khan Imran Zaka Shahnwaz Hussain Muhammad Sufyan Ch Amjad Mehmood 《Journal of Materials Science: Materials in Electronics》2017,28(20):15065-15073
Perovskite manganites with chemical formula La0.5Ba0.5MnO3 (LBMO) samples were synthesized though the hydrothermal process by heating suitable reactants at 270?°C in an autoclave for 25 h. After washing with de-ionized water several times, the as prepared samples were then calcined at different temperatures, ranging from 120 to 1000?°C to remove the impurities. Final sintering of the sample was carried out at 1350?°C for 24 h. Subsequent X-ray diffraction (XRD) measurements were also carried out. Rietveld refinement of XRD data for the sample sintered at 1350?°C confirmed single phase cubic structure with lattice parameter a?=?3.9057? and space group P m ?3 m. The dc electrical measurements were performed in a broad range of temperatures from 77 to 870 K on this sample. The focal point of this study was to obtain microscopic parameters and characteristic length in order to discuss the relationship between magnetic, electric and phonon excitations. The electrical resistivity measurements revealed a metallic/ferromagnetic to semiconductor/paramagnetic phase transition (TC) at 339 K. In the metallic region the experimental data best fitted the resistivity equation \(\uprho (\text{T})={\uprho _{o}}+{\uprho _2}{\text{T}^2}+{\uprho _{2.5}}{\text{T}^{2.5}}+{\uprho _{4.5}}{\text{T}^{4.5}}\) showing that the resistivity effect arises due to residual impurities, grain boundaries, electron–electron (e–e), electron–magnon (e–mag) and electron–phonon (e–ph) scattering. The analysis of the resistivity data above TC has shown a transformation in conduction mechanism from Mott’s variable range hopping (MVRH) to small polaron hopping (SPH), around 585 K. Hopping of carriers to larger distances with multiplying values of activation energies are analyzed through MVRH below 585 K. Above 585 K, the carriers were found to be trapped by several scattering centers through small polaron, this behavior having been interpreted in the light of SPH model. 相似文献
3.
Mohamed Baazaoui Sobhi Hcini Michel Boudard Sadok Zemni Mohamed Oumezzine 《Journal of Superconductivity and Novel Magnetism》2015,28(7):1887-1893
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ). 相似文献
4.
Structural, magnetic, magnetocaloric, and electrical properties are reported for mixed-valence manganite La0.67Pb0.13Na0.2MnO3. X-ray diffraction reveals that the sample crystallizes in the rhombohedric structure with the R-3c space group. The magnetic properties of the polycrystalline La0.67Pb0.13Na0.2MnO3 compound are discussed in detail, based on the susceptibility, magnetization, and isotherm. The sample presents a ferromagnetic property with T C= 275 K and a Griffiths phase at T G= 325 K which gives the existence of ferromagnetic clusters in the paramagnetic domain. A large deviation is usually observed between field cooled (FC) and zero field cooled (ZFC). M(T) is a low temperature below the blocking temperature. At 40 K, a spin-glass or a cluster-glass state is seen to arise from a ferromagnetic state. This is caused by the competition between the antiferromagnetic and ferromagnetic interactions. The electrical properties show the presence of a metal–semiconductor transition at T M?Sc. To understand the dependence of disorder with the transport mechanism, we used the phenomenological equation for resistivity under a percolation approach, which is dependent on the phase segregation of a paramagnetic semiconductor and ferromagnetic metallic regions. 相似文献
5.
R. Moubah S. Colis G. Versini S. Barre C. Ulhaq-Bouillet A. Dinia 《Journal of Superconductivity and Novel Magnetism》2017,30(5):1171-1175
We report on the growth and magnetic properties of La2/3Sr1/3MnO3/SrTiO3/CoFe2 hard-soft magnetic systems prepared by pulsed laser deposition on SrTiO3(001) substrates. In situ reflection high-energy electron diffraction along the [100]SrTiO3 substrate azimuth and atomic force microscopy measurements reveal that La2/3Sr1/3MnO3 and SrTiO3 grow both in a three dimensional mode and that the roughness of the lower and upper magnetic/non-magnetic interfaces ranges between 2 and 4 Å. Cross-section transmission electron microscopy observations show that the layers are continuous, with an homogeneous thickness, and that the interfaces are mostly sharp and correlated. The magnetization curves show a two step reversal of the magnetization, with very distinct coercive fields. A small anisotropy is observed for the CoFe2 layer with an in plane easy magnetization axis along the [110]SrTiO3 direction. Minor magnetization loops indicate that the coupling between the magnetic layers is negligible. 相似文献
6.
Two-layer epitaxial heterostructures (30 nm)La0.67Ca0.33MnO3/(30 nm)La0.67Ba0.33MnO3 (LCMO/LBMO) have been grown by laser deposition on single crystal (001)LaAlO3 (LAO) substrates. In this system, the upper (LCMO) layer occurs under the action of tensile stresses in the substrate plane, whereas the lower (LBMO) layer exhibits biaxial compression. The formation of a 30-nm-thick LCMO film on the surface of the 30-nm-thick LBMO layer leads to an increase in the level of mechanical stresses in the latter layer. The maximum electric resistivity ρ of the (30 nm)LCMO/(30 nm)LBMO/LAO structure was observed at a temperature 25–30 K below that corresponding to the maximum of the ρ(T) curve for a single (30 nm)LBMO film on the same LAO substrate. 相似文献
7.
K. Riahi I. Messaoui W. Cheikhrouhou-Koubaa S. Mercone B. Leridon M. Koubaa A. Cheikhrouhou 《Journal of Superconductivity and Novel Magnetism》2017,30(8):2081-2089
The La0.78Dy0.02Ca0.2MnO3 (LDCMO) compound prepared via high-energy ball-milling (BM) presents a ferromagnetic-to-paramagnetic transition (FM-PM) and undergoes a second-order phase transition (SOFT). Based on a phenomenological model, magnetocaloric properties of the LDCMO compound have been studied. Thanks to this model, we can predict the values of the magnetic entropy change ΔS, the full width at half-maximum δ T FWHM, the relative cooling power (RCP), and the magnetic specific heat change ΔC p for our compound. The significant results under 2 T indicate that our compound could be considered as a candidate for use in magnetic refrigeration at low temperatures. In order to further understand the FM-PM transition, the associated critical behavior has been investigated by magnetization isotherms. The critical exponents estimated by the modified Arrott plot, the Kouvel–Fisher plot, and the critical isotherm technique are very close to those corresponding to the 3D-Ising standard model (β = 0.312 ± 0.07, γ = 1.28 ± 0.02, and δ = 4.80).Those results revealed a long-range ferromagnetic interaction between spins. 相似文献
8.
E. Restrepo-Parra G. Orozco-Hernández J. Urrea-Serna J. F. Jurado J. C. Vargas-Hernández J. C. Riaño-Rojas J. Restrepo 《Journal of Materials Science》2010,45(24):6763-6768
A Monte Carlo simulation study of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers exchange bias (EB) properties by using a classical Heisenberg model and Monte Carlo method with Metropolis algorithm
is addressed. Samples were built atom-by-atom in order to resemble the real roughness. In this model, several contributions
included nearest neighbors exchange interactions; two different interface couplings, magnetocrystalline anisotropy and Zeeman
term, were considered. Here, an influence of the relaxation steps on the interface roughness is present. Our study focuses
on the influence of interface roughness on hysteresis loops, particularly EB field (H
ex) and coercive force (H
c). Results reveal that H
ex and H
c decrease as the interface roughness increases. 相似文献
9.
G. S. Patrin K. P. Polyakova T. N. Patrusheva D. A. Velikanov 《Technical Physics Letters》2007,33(4):330-332
We have experimentally studied the magnetic properties of manganite films obtained for first time using an extraction-pyrolysis technique. It is established that the characteristics of samples significantly depend on the conditions of final annealing. The annealing at temperatures T a < 970 K is accompanied by strong thermomagnetic effects, and the resulting films possess properties similar to those of spin glasses. When the annealing temperature is increased to T a ≥ 1020 K, the films exhibit magnetic properties typical of ferromagnetic systems. 相似文献
10.
R. Skini M. Khlifi E. Dhahri E. K. Hlil 《Journal of Superconductivity and Novel Magnetism》2017,30(11):3091-3095
This investigation is interested in studying the relation between magnetocaloric effect and transport properties i La0.8Ca0.2MnO3 manganite compound. The value of the magnetocaloric effect has been determined from the calculation of magnetization as a function of temperature under different external magnetic fields. This study also provides an alternative method to determine the magnetocaloric properties such as magnetic entropy change and heat capacity change on the basis of M(T, H) measurements. On the other hand, based on magnetic and resistivity measurements, the magnetocaloric properties of this compound were investigated using an equation of the form \({\Delta } S \,=\, - \alpha {\int \limits _{0}^{H}} {\left [ {\frac {\delta Ln\left (\rho \right )}{\delta T}} \right ]}_{H} dH\), which relates magnetic order to transport behavior of the compounds. As an important result, the values of MCE and the results of calculation are in good agreement with the experimental ones, which indicates the strong correlation between the electric and magnetic properties in manganites. 相似文献
11.
A. Krichene R. Thaljaoui W. Boujelben 《Journal of Superconductivity and Novel Magnetism》2015,28(7):1881-1885
We have inspected the magnetic properties of polycrystalline La0.4Bi0.1Ca0.5MnO3 using electron spin resonance (ESR) in the temperature range 150–280 K. The temperature dependence of magnetization indicates that the Curie temperature is T C= 225 K. ESR spectra revealed that the sample is not completely paramagnetic above its Curie temperature through the presence of ferromagnetic interactions in the temperature range 225–270 K which can be attributed to the presence of Griffiths phase in this temperature range. The sample becomes completely paramagnetic above 270 K. The presence of Griffiths phase can be attributed to the disorder induced by the 6 s 2 lone pair electrons of Bi3+ ions. 相似文献
12.
Lili Chen Jiyu Fan Wei Tong Dazhi Hu Lei Zhang Langsheng Ling Li Pi Yuheng Zhang Hao Yang 《Journal of Materials Science》2018,53(1):323-332
We report a detailed study of magnetic properties in manganite (La0.5Pr0.5)0.67Ca0.33MnO3. In contrast to the usual beliefs, it shows an abnormal upturn deviation from the Curie–Weiss law on the inverse susceptibility curve. Such a non-Griffiths-like phase is further confirmed from the inverse double integrated intensities of electron paramagnetic resonance spectrum. Because La\(^{3+}\) ions are substituted by Pr\(^{3+}\) ions with 50% concentrations, the ratio of three ions (La\(^{3+}\), Pr\(^{3+}\), Ca\(^{2+}\)) is close to 1 on A-site sublattice. As a result, some short-range antiferromagnetic (CO AFM) phases come into being in the system due to the existence of localized charge ordering states. Therefore, the upturn deviation from Curie–Weiss law originates from the appearance of short-range CO AFM correlations above \(T_{\text{C}}\). Additionally, a magnetic field-driven-metamagnetic transition is found, which gives a main contribution for the large magnetic entropy change (MEC) observed in this sample. Both the Arrott plot and the renormalized MEC curves testify that this transition belongs to first-order magnetic transition. The insignificant hysteresis loop indicate that the inevitable thermal hysteresis can be ignored in the present first-order material implying that it is a potential candidate for the cryogenic temperature magnetic refrigeration. 相似文献
13.
G. Lalitha N. Pavan Kumar P. Venugopal Reddy 《Journal of Low Temperature Physics》2018,192(1-2):133-144
With a view to understand the influence of chromium doping at the Mn site on the electrical and magnetic behavior of the Nd0.5Sr0.5MnO3 manganite system, a series of samples were prepared by the citrate sol–gel route method. The samples were characterized structurally by XRD. A systematic investigation of electrical resistivity over a temperature range 5–300 K was carried out mainly to understand the magneto-transport behavior in these materials. Studies on the variation of magnetization with temperature over a temperature range 80–330 K were undertaken. Investigation of magnetization at different magnetic fields at two different temperatures, viz. 80 and 300 K, was also carried out. The results show that chromium doping gave typical electrical and magnetic properties. It has been concluded that the coexistence of charge ordered and ferromagnetic phases induced by chromium doping plays an important role in the low-temperature behavior of the system. 相似文献
14.
Liqin Yang Xinsheng Yang Li Lv Cuihua Cheng Yong Zhao 《Journal of Superconductivity and Novel Magnetism》2011,24(6):1847-1851
A novel boned perovskite manganese oxide magnetoresistant material was prepared using La0.7Sr0.3MnO3 (LSMO) as the precursor powders and metal tin (Sn) as the binder. The microstructure and phase characteristics, low-field transport properties were studied. Sn segregated at the grain boundaries of LSMO grains. The insulator–metal (I–M) transition and enhanced LFMR are only observed with a low content of Sn, due to grain boundary disorder and spin polarized tunneling between grain boundaries. The Sn addition induced resistivity decreasing dramatically. In the high temperature PM region, the resistivities for samples with low Sn content follow the adiabatic small-polaron-hopping model. 相似文献
15.
The La0.6Ca0.4?x Ag x MnO3 samples with x = 0 and 0.10 were prepared by sol–gel methods. Structural and electrical measurements were performed to examine the effect of the silver substitution in the calcium sites on the physical properties. Magnetization versus temperature studies have shown that all samples exhibit a magnetic transition from ferromagnetic to paramagnetic phase when temperature is increased. The second transition in the resistivity in the La0.6Ca0.4MnO3 compound can be attributed to an abnormality characteristic of charge ordering (CO) effect. The electrical resistivity was described by a phenomenological percolation model. Ten percent of Ag substitution in the Ca site exhibits a magnetoresistance value about 75 % near room temperature at the applied magnetic field of 8 T. 相似文献
16.
S. V. Trukhanov 《Technical Physics Letters》2011,37(4):350-353
It is established that the magnetic state of the anion-deficient La0.70Sr0.30MnO2.85 manganite represents the spin-glass state of the cluster. The magnetic field at the beginning (H < 10 kOe) leads to the fragmentation of ferromagnetic clusters, then (H > 10 kOe) leads to the transition to a ferromagnetic state of an antiferromagnetic matrix and to increase in the degree of
polarization of local spins of manganese. It is determined that the freezing temperature of magnetic moments varies as T
f
= 65 − 6H
0.21. The causes and mechanism of the magnetic phase separation are discussed. 相似文献
17.
A systematic investigation of photoinduced properties is carried out in La0.67Ca0.33MnO3 film prepared on LaAlO3 (100) substrate by magnetron sputtering method. At T < 270 K, the resistivity of film induced by laser increases because of the demagnetization effect of manganites. The photoinduced
relaxation character of film indicates that the time constant increases with increasing temperature, which is attributed to
the growing thermal fluctuation. After laser irradiation, the resistivity returns to the original value and the relaxation
time seems to be independent of temperature. In insulating state, laser irradiation induces the reduction in resistivity of
film due to the excitation of small polarons. 相似文献
18.
Epitaxial trilayer heterostructures of the type La0.67Ca0.33MnO3/SrTiO3/La0.67Ca0.33MnO3 were grown by laser ablation on (001)[(LaAlO3)0.3+(Sr2AlTaO6)0.7] substrates. The real part of the dielectric permittivity ε and the loss factor tan δ of a 1100-nm-thick SrTiO3 interlayer were studied in the temperature interval T=4.2–300 K in a nonbiased state and at a bias voltage of ±2.5 V applied to the manganite electrodes. Using the temperature dependence ε(T) measured for the SrTiO3 layer grown between the manganite electrodes, we have estimated the capacitance of La0.67Ca0.33MnO3/SrTiO3 interfaces (C1≈2 μF/cm2) related to the electric field penetrating from the interlayer into La0.67Ca0.33MnO3. 相似文献
19.
Jianming Zhan Lin Li Tingting Wang Jialu Wang Yihong Chen Li Zhang Jingqin Shen Peigang Li Yuke Li 《Journal of Superconductivity and Novel Magnetism》2017,30(2):305-309
Through the measurement of resistivity, magnetic susceptibility, and Hall effect, we discovered a novel BiSe2-based superconductor Ca0.5La0.5FBiSe2 with T c of 3.9 K. A strong diamagnetic signal below T c in susceptibility χ(T) is observed indicating the bulk superconductivity. The negative Hall coefficient throughout the whole temperature regime implies the dominant electron-type carriers in the sample. Different to most of BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, its resistivity in the present compound exhibits a metallic behavior down to T c . Together with the enhanced T c , the metallic character of the normal state implies that the electronic structure of Ca0.5La0.5FBiSe2 may be different to those in the other BiS2-based compounds. 相似文献
20.
B. Samantaray S. K. Srivastava S. Ravi I. Dhiman A. Das 《Journal of Superconductivity and Novel Magnetism》2011,24(6):1933-1937
La0.85Ag0.15MnO3, the colossal magnetoresistance compound was prepared and the neutron powder diffraction patterns at different temperatures down to 19 K were recorded to study their crystal structure and magnetic properties. These patterns were analyzed by the Rietveld refinement technique and are found to be free from any impurity phase. The compound is found to crystallize in a mixture of R[`3]cRoverline{3}c and Pnma space group and the phase fraction is found to vary with temperature. A cross-over from R[`3]cRoverline{3}c dominated high temperature phase to Pnma dominated low temperature phase at around 130 K was observed. At low temperatures, especially below 285 K, the diffraction patterns could be refined by including the magnetic reflections corresponding to ferromagnetic structure. The refined magnetic moment of Mn ions is found to be along b axis of the unit cell with a maximum moment of 3.74 μB at 19 K and this value is comparable to the saturation magnetization observed at 20 K from magnetization measurement. 相似文献