首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dc characteristics of InGaAs/InP double heterojunction bipolar transistors (DHBTs) are studied under high-energy (~1 MeV) electron irradiation up to a fluence of 14.8×1015 electrons/cm 2. The devices show an increase in common-emitter current gain (hfe) at low levels of dose (<1015 electrons/cm2) and a gradual decrease in hfe and an increase in output conductance for higher doses. The decrease in h fe is as much as ~80% at low base currents (~10 μA) after a cumulative dose of 14.8×1015 electrons/cm2. The observed degradation effects in collector current-voltage (I-V) characteristics are studied quantitatively using a simple SPICE-like device model. The overall decrease in hfe is attributed to increased recombination in the emitter-base junction region caused by radiation-induced defects. The defects introduced in the collector-base junction region are believed to be responsible for the observed increase in the output conductance  相似文献   

2.
The effects of high-energy (~1 MeV) electron irradiation on the dc characteristics of InGaAs/InP single heterojunction bipolar transistors (SHBT's) are investigated. The device characteristics do not show any significant change for electron doses <1015/cm2. For higher doses, devices show a decrease in collector current, a degradation of common-emitter current gain, an increase in collector saturation voltage and an increase in the collector output conductance. A simple SPICE-like device model is developed to describe the dc characteristics of SHBT's. The model parameters extracted from the measured dc characteristics of the devices before and after irradiation are used to get an insight into the physical mechanisms responsible for the degradation of the devices  相似文献   

3.
We report on the microwave performance of InP/In0.53Ga 0.47As heterojunction bipolar transistors (HBT's) utilizing a carbon-doped base grown by chemical beam epitaxy (CBE). The fT and fmax of the HBT having two 1.5×10 μm2 emitter fingers were 175 GHz and 70 GHz, respectively, at IC=40 mA and VCE=1.5 V. To our knowledge, the f T of this device is the highest of any type of bipolar transistors yet reported. These results indicate the great potential of carbon-doped base InP/InGaAs HBT's for high-speed applications  相似文献   

4.
Very-high-performance common-emitter InP/InGaAs single heterojunction bipolar transistors (HBTs) grown by metalorganic molecular beam epitaxy (MOMBE) are reported. They exhibit a maximum oscillation frequency (fT) of 180 GHz at a current density of 1×105 A/cm2. this corresponds to an (RBCBC)eff=f T/(8πf2max) delay time of 0.12 ps, which is the smallest value every reported for common-emitter InP/InGaAs HBTs. The devices have 11 μm2 total emitter area and exhibit current gain values up to 100 at zero base-collector bias voltage. The breakdown voltage of these devices is high with measured BVCEO and BVCEO of 8 and 17 V, respectively  相似文献   

5.
Classic signatures of Be diffusion were observed in InAlAs/InGaAs HBT's after elevated temperature bias stress, i.e., a positive shift in the Gummel plot, higher collector ideality, and higher offset voltage. An activation energy of 1.57 eV was calculated. Lifetimes of 3.3×106 h and 37000 h were extrapolated for low and high power operation, respectively. In contrast, an InP/InGaAs HBT with a C doped base showed no signatures of C diffusion. The results show that Be diffusion is manageable at lower power. They also support the idea that C is more stable than Be in this material system  相似文献   

6.
The results of surface modification induced effects on InP/InGaAs single heterojunction bipolar transistors, as revealed by magnetotransport experiments, are described here. The surface treatments included both sulphur-based surface passivation and ion bombardment-induced surface damage. The former is known to improve device characteristics and the latter to degrade device operation. In this work the aim was to assess these techniques for tailoring device performance for surface sensing applications. Device characteristics were found to be sensitive to surface preparation prior to measurements. Measurements revealed that surface treatments that improve device performance also reduce sensitivity to external magnetic fields while treatments that degrade performance make devices more sensitive to externally applied magnetic fields.  相似文献   

7.
Several μ-bridge structures for InP-based heterojunction bipolar transistors (HBTs) are reported. The radio frequency measurement results of these InP HBTs are compared with each other. The comparison shows that μ-bridge structures reduce the parasites and double μ-bridge structures have a better effect. Due to the utilization of the double μ-bridges, both the cutoff frequency f_T and also the maximum oscillation frequency f_(max) of the 2×12.5 μm~2 InP/InGaAs HBT reach nearly 160 GHz. The results also show that the μ-bridge has a better effect in increasing the high frequency performance of a narrow emitter InP HBT.  相似文献   

8.
By the use of analytical expressions and SPICE simulation, the switching performance of integrated injection logic (I2L) using heterojunction bipolar transistors (HBTs) has been investigated. A proposed inverter configuration using InP/InGaAs HBTs which avoids saturation in the p-n-p injector has predicted propagation delays of 16 ps at only 3-mW power dissipation. Transient response analysis illustrates the importance of reducing parasitic resistances in the structure. Ring oscillator simulations indicate that switching speeds approaching those of emitter-coupled logic but with advantages in high density and low power are possible  相似文献   

9.
We report the microwave characteristics of InP/InGaAs heterojunction bipolar transistors (HBTs) using a carbon-doped base grown by chemical beam epitaxy (CBE). An extrinsic delay time of 0.856 ps was achieved by nonequilibrium transport in a very thin base layer and extremely small emitter parasitic resistance through the use of silicon δ-doping in the emitter ohmic contact layer. To our knowledge, this is the shortest extrinsic delay time of any bipolar transistors reported. This result indicates the great potential of InP/InGaAs HBTs for applications requiring a very large bandwidth  相似文献   

10.
To reduce base resistance of an InP/InGaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy, the doping characteristics of carbon-doped InGaAs and the dependence of doping concentration on current gain were investigated. Using a thicker graded base was found to increase current gain significantly, resulting in increased doping level in the InGaAs: C-base layer. In particular, an 80-nm-thick graded base produces a base sheet resistance of 285 Ω/sq and maintains a practically useful current gain of 23 and a high cut-off frequency of 139 GHz.  相似文献   

11.
InAlAs/InGaAs heterojunction bipolar transistors fabricated from wafers grown by molecular beam epitaxy are discussed. A cutoff frequency of 32 GHz for a collector current of 20 mA is achieved in the emitter area of devices 6×10 μm2. The use of heavily doped and nondoped InGaAs layers as the emitter cap and collector, respectively, results in a reduction of the emitter and collector charging times; this, in turn, leads to improved microwave performance  相似文献   

12.
Bipolar transistors with subpicosecond extrinsic delay are discussed. These InP/InGaAs heterostructure transistors show a unity-current-gain cutoff frequency f$T=165 GHz and maximum oscillation frequency fMAX=100 GHz at room temperature. The authors model shows that an f$T beyond 386 GHz is obtainable by further vertical scaling. Ring oscillators implemented with nonthreshold logic (NTL) and transistors having fMAX=71 GHz show a propagation delay of 14.7 ps and 5.4 mW average power consumption per stage  相似文献   

13.
InGaAs/InP heterostructure bipolar transistors have been realised using a new selfaligned process. Transistor wafers were grown by chemical beam epitaxy. Ideality factors close to unity were measured for emitter-base and collector-base diodes. The resulting devices exhibit nearly constant gain over four orders of magnitude of collector current densities, from j=1.5*10/sup -4/ A/cm/sup 2/ to 1.5 A/cm/sup 2/.<>  相似文献   

14.
Pseudomorphic AlInP/InP heterojunction bipolar transistors   总被引:1,自引:0,他引:1  
Novel InP-based heterojunction bipolar transistors (HBTs) using an AlInP pseudomorphic emitter, together with an InP base and collector, have been fabricated. By using InP as both base and collector, the advantage of high electron velocity and high breakdown field of InP collectors are obtained without the problem associated with the energy barrier between the more standard InGaAs/InP base and collector heterojunction. Epitaxial layers were grown by gas-source molecular beam epitaxy (GSMBE). The 200 Å pseudomorphic emitter had an aluminium fraction of 15%, sufficiently suppressing hole injection from the base. The DC gain for 40×40 μm2 devices reached 18. The breakdown voltage BVCEO of 10 V is an improvement over devices with InGaAs base and collector layers  相似文献   

15.
Metal organic molecular beam epitaxy (MOMBE) was successfully used for the first time to realise a high speed monolithic photoreceiver. Incorporating an InGaAs pin photodetector followed by a transimpedance preamplifier circuit implemented with InP/InGaAs heterojunction bipolar transistors (HBTs), the OEIC photoreceiver had a bandwidth of 6 GHz and a midband transimpedance of 350 Omega . In a system experiment performed at 10 Gbit/s, the receiver exhibited a sensitivity of -15.5 dBm for a bit error rate of 10/sup -9/ at a wavelength of 1.53 mu m. This is the first demonstration of operation of a long wavelength OEIC photoreceiver at this speed.<>  相似文献   

16.
High-performance InP/In0.53Ga0.47As metamorphic heterojunction bipolar transistors (MHBTs) on GaAs substrate have been fabricated using InxGa1-xP strain relief buffer layer grown by solid-source molecular beam epitaxy (SSMBE). The MHBTs exhibited a dc current gain over 100, a unity current gain cutoff frequency (fT) of 48 GHz and a maximum oscillation frequency (fMAX) of 42 GHz with low junction leakage current and high breakdown voltages. It has also been shown that the MHBTs have achieved a minimum noise figure of 2 dB at 2 GHz (devices with 5×5 μm 2 emitter) and a maximum output power of 18 dBm at 2.5 GHz (devices with 5×20 μm2 emitter), which are comparable to the values reported on the lattice-matched HBTs (LHBTs). The dc and microwave characteristics show the great potential of the InP/InGaAs MHBTs on GaAs substrate for high-frequency and high-speed applications  相似文献   

17.
The first N-p-n InP/InGaAs heterojunction bipolar transistors (HBTs) with p-type carbon doping in InGaAs are reported. P-type carbon doping in the InGaAs base has been achieved by gas-source molecular beam epitaxy (GSMBE) using carbon tetrachloride (CCl4) as the dopant source. The resulting hole concentration in the base was 1×1019 cm-3. HBTs fabricated using material from this growth method display good I-V characteristics with DC current gain above 500. This verifies the ability to use carbon doping to make a heavily p-type InGaAs base of an N-p-n HBT  相似文献   

18.
The characteristics of InGaAlAs/InGaAs heterojunction bipolar transistors (HBTs) grown by molecular beam epitaxy are described. A current gain of 15600 at a current density of ~104 A/cm2 and an emitter-base heterojunction ideality factor of 1.02 were measured. Appropriately designed InGaAlAs/InGaAs HBTs, when operated as phototransistors, also had high gains. A current gain of 1000 for a collector current of only 10 μA was obtained for phototransistors. Such high gains are due to low recombination currents as a consequence of the good crystalline quality of the InGaAlAs bulk and InGaAlAs/InGaAs interface  相似文献   

19.
A high speed bipolar transistor with high breakdown voltage BV/sub CEO/ is described. The structure uses a composite collector of InGaAs and InP. A common emitter gain of 65 is obtained with a base doping of 7*10/sup 19/ cm/sup -3/ and a breakdown voltage in excess of 10 V. The f/sub T/=64 GHz was reached at a collector-emitter voltage of 2 V and a current density of 52 kA/cm/sup 2/. The potential of this structure for very high speed applications is demonstrated by the extracted intrinsic transit time of 0.4 ps.<>  相似文献   

20.
In this paper, the characteristics of InP/InGaAs abrupt, setback, and heterostructure-emitter heterojunction bipolar transistors (HBTs) are comparatively investigated by twodimensional simulation analysis. In the setback (heterostructure-emitter) HBT, a thin 50 ? undoped In0.53Ga0.47As (n-In0.53Ga0.47As) layer is inserted between n-InP emitter and p +-InGaAs base layers to lower the energy band at emitter side for decreasing the collector-emitter offset voltage. The simulated results exhibits that the abrupt HBT has the largest current gain, the largest collector-emitter offset voltage, and the smallest unity gain cutoff frequency. While, the setback and heterostructure-emitter HBTs exhibit the smallest current gain and offcet voltage, respectively. Consequentially, the demonstration and comparison of the three-type HBTs provide a promise for design in circuit applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号